Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384203764> ?p ?o ?g. }
- W4384203764 abstract "Introduction: N4-acetylcytidine (ac4C) is a critical acetylation modification that has an essential function in protein translation and is associated with a number of human diseases. Methods: The process of identifying ac4C sites by biological experiments is too cumbersome and costly. And the performance of several existing computational models needs to be improved. Therefore, we propose a new deep learning tool EMDL-ac4C to predict ac4C sites, which uses a simple one-hot encoding for a unbalanced dataset using a downsampled ensemble deep learning network to extract important features to identify ac4C sites. The base learner of this ensemble model consists of a modified DenseNet and Squeeze-and-Excitation Networks. In addition, we innovatively add a convolutional residual structure in parallel with the dense block to achieve the effect of two-layer feature extraction. Results: The average accuracy (Acc), mathews correlation coefficient (MCC), and area under the curve Area under curve of EMDL-ac4C on ten independent testing sets are 80.84%, 61.77%, and 87.94%, respectively. Discussion: Multiple experimental comparisons indicate that EMDL-ac4C outperforms existing predictors and it greatly improved the predictive performance of the ac4C sites. At the same time, EMDL-ac4C could provide a valuable reference for the next part of the study. The source code and experimental data are available at: https://github.com/13133989982/EMDLac4C ." @default.
- W4384203764 created "2023-07-14" @default.
- W4384203764 creator A5040301865 @default.
- W4384203764 creator A5052163916 @default.
- W4384203764 creator A5069962599 @default.
- W4384203764 date "2023-07-13" @default.
- W4384203764 modified "2023-09-27" @default.
- W4384203764 title "EMDL-ac4C: identifying N4-acetylcytidine based on ensemble two-branch residual connection DenseNet and attention" @default.
- W4384203764 cites W2006843712 @default.
- W4384203764 cites W2030591940 @default.
- W4384203764 cites W2064846679 @default.
- W4384203764 cites W2097275168 @default.
- W4384203764 cites W2156125289 @default.
- W4384203764 cites W2278741011 @default.
- W4384203764 cites W2287984595 @default.
- W4384203764 cites W2292706259 @default.
- W4384203764 cites W2754113619 @default.
- W4384203764 cites W2886356788 @default.
- W4384203764 cites W2891420113 @default.
- W4384203764 cites W2900694973 @default.
- W4384203764 cites W2901932654 @default.
- W4384203764 cites W2904095049 @default.
- W4384203764 cites W2912031002 @default.
- W4384203764 cites W2912369228 @default.
- W4384203764 cites W2915489297 @default.
- W4384203764 cites W2922306497 @default.
- W4384203764 cites W2949844417 @default.
- W4384203764 cites W2965635599 @default.
- W4384203764 cites W2967387109 @default.
- W4384203764 cites W2972517644 @default.
- W4384203764 cites W2972621596 @default.
- W4384203764 cites W2979937512 @default.
- W4384203764 cites W2979999916 @default.
- W4384203764 cites W3004491707 @default.
- W4384203764 cites W3026999132 @default.
- W4384203764 cites W3034527519 @default.
- W4384203764 cites W3034750978 @default.
- W4384203764 cites W3035761298 @default.
- W4384203764 cites W3084754935 @default.
- W4384203764 cites W3092685798 @default.
- W4384203764 cites W3107998196 @default.
- W4384203764 cites W3108267036 @default.
- W4384203764 cites W3109576256 @default.
- W4384203764 cites W3128269684 @default.
- W4384203764 cites W3134163647 @default.
- W4384203764 cites W3137227889 @default.
- W4384203764 cites W3151617818 @default.
- W4384203764 cites W3171942304 @default.
- W4384203764 cites W3174855653 @default.
- W4384203764 cites W3182086921 @default.
- W4384203764 cites W3195747191 @default.
- W4384203764 cites W3203684982 @default.
- W4384203764 cites W3210257016 @default.
- W4384203764 cites W4210371902 @default.
- W4384203764 cites W4210670866 @default.
- W4384203764 cites W4220984144 @default.
- W4384203764 cites W4229021228 @default.
- W4384203764 cites W4284969198 @default.
- W4384203764 cites W4285405240 @default.
- W4384203764 cites W4291940222 @default.
- W4384203764 cites W4292117569 @default.
- W4384203764 cites W4294612772 @default.
- W4384203764 cites W4294691146 @default.
- W4384203764 cites W4297260678 @default.
- W4384203764 cites W4307886463 @default.
- W4384203764 cites W4309145837 @default.
- W4384203764 cites W4309155813 @default.
- W4384203764 cites W4312544841 @default.
- W4384203764 cites W4315864628 @default.
- W4384203764 doi "https://doi.org/10.3389/fgene.2023.1232038" @default.
- W4384203764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37519885" @default.
- W4384203764 hasPublicationYear "2023" @default.
- W4384203764 type Work @default.
- W4384203764 citedByCount "0" @default.
- W4384203764 crossrefType "journal-article" @default.
- W4384203764 hasAuthorship W4384203764A5040301865 @default.
- W4384203764 hasAuthorship W4384203764A5052163916 @default.
- W4384203764 hasAuthorship W4384203764A5069962599 @default.
- W4384203764 hasBestOaLocation W43842037641 @default.
- W4384203764 hasConcept C111919701 @default.
- W4384203764 hasConcept C11413529 @default.
- W4384203764 hasConcept C119857082 @default.
- W4384203764 hasConcept C138885662 @default.
- W4384203764 hasConcept C14036430 @default.
- W4384203764 hasConcept C153180895 @default.
- W4384203764 hasConcept C154945302 @default.
- W4384203764 hasConcept C155512373 @default.
- W4384203764 hasConcept C177264268 @default.
- W4384203764 hasConcept C186060115 @default.
- W4384203764 hasConcept C199360897 @default.
- W4384203764 hasConcept C2776401178 @default.
- W4384203764 hasConcept C2776760102 @default.
- W4384203764 hasConcept C41008148 @default.
- W4384203764 hasConcept C41895202 @default.
- W4384203764 hasConcept C43126263 @default.
- W4384203764 hasConcept C78458016 @default.
- W4384203764 hasConcept C86803240 @default.
- W4384203764 hasConceptScore W4384203764C111919701 @default.
- W4384203764 hasConceptScore W4384203764C11413529 @default.
- W4384203764 hasConceptScore W4384203764C119857082 @default.