Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384204675> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4384204675 abstract "Abstract Background: Dental age is crucial for treatment planning in pediatric and orthodontic dentistry. Dental age calculation methods can be categorized into morphological, biochemical, and radiological methods. Radiological methods are commonly used because they are non-invasive and reproducible. When radiographs are available, dental age can be calculated by evaluating the developmental stage of permanent teeth and converting it into an estimated age using a table, or by measuring the length between some landmarks such as the tooth, root, or pulp, and substituting them into regression formulas. However, these methods heavily depend on manual classification or measurement and are time-consuming in daily clinical practice. In this study, we proposed a novel, completely automatic dental age calculation pipeline from panoramic radiographs without time-consuming processes using various deep learning techniques. Methods: Overall, 8,023 panoramic radiographs were used as training data for Scaled-YOLOv4 to detect dental germs. In total, 18,485 single-root and 16,313 multi-root dental germ images were used as training data for EfficientNetV2 M to classify the developmental stages of detected dental germs. 157 panoramic radiographs were used to compare automatic and manual human experts' dental age calculations. Results: Our dental germ detection was achieved with a mean average precision of 98.26, and dental germ classifier for single and multi root were achieved with a Top-3 accuracy of 98.46% and 98.36%, respectively. A mean absolute error of 0.261 years was achieved compared with human experts. Conclusion: Our novel pipeline is expected to support dentists by reducing time for dental age calculations with clinically acceptable performance." @default.
- W4384204675 created "2023-07-14" @default.
- W4384204675 creator A5008856469 @default.
- W4384204675 creator A5019674552 @default.
- W4384204675 creator A5029715901 @default.
- W4384204675 creator A5041519351 @default.
- W4384204675 creator A5060135962 @default.
- W4384204675 creator A5077767587 @default.
- W4384204675 date "2023-07-13" @default.
- W4384204675 modified "2023-09-25" @default.
- W4384204675 title "Automatic dental age calculation using orthopantomogram and deep learning" @default.
- W4384204675 cites W1975479203 @default.
- W4384204675 cites W2025015803 @default.
- W4384204675 cites W2117539524 @default.
- W4384204675 cites W2138593938 @default.
- W4384204675 cites W2887602961 @default.
- W4384204675 cites W2908248506 @default.
- W4384204675 cites W2934073222 @default.
- W4384204675 cites W3003562648 @default.
- W4384204675 cites W3016417837 @default.
- W4384204675 cites W3040455124 @default.
- W4384204675 cites W3102564565 @default.
- W4384204675 cites W3126531098 @default.
- W4384204675 cites W3173418220 @default.
- W4384204675 cites W3202393982 @default.
- W4384204675 cites W3206708164 @default.
- W4384204675 cites W3210593880 @default.
- W4384204675 cites W4205239279 @default.
- W4384204675 cites W4214880644 @default.
- W4384204675 cites W4248083651 @default.
- W4384204675 cites W4283260031 @default.
- W4384204675 doi "https://doi.org/10.21203/rs.3.rs-3110290/v1" @default.
- W4384204675 hasPublicationYear "2023" @default.
- W4384204675 type Work @default.
- W4384204675 citedByCount "0" @default.
- W4384204675 crossrefType "posted-content" @default.
- W4384204675 hasAuthorship W4384204675A5008856469 @default.
- W4384204675 hasAuthorship W4384204675A5019674552 @default.
- W4384204675 hasAuthorship W4384204675A5029715901 @default.
- W4384204675 hasAuthorship W4384204675A5041519351 @default.
- W4384204675 hasAuthorship W4384204675A5060135962 @default.
- W4384204675 hasAuthorship W4384204675A5077767587 @default.
- W4384204675 hasBestOaLocation W43842046751 @default.
- W4384204675 hasConcept C100548800 @default.
- W4384204675 hasConcept C126838900 @default.
- W4384204675 hasConcept C154945302 @default.
- W4384204675 hasConcept C190892606 @default.
- W4384204675 hasConcept C199343813 @default.
- W4384204675 hasConcept C29694066 @default.
- W4384204675 hasConcept C36454342 @default.
- W4384204675 hasConcept C41008148 @default.
- W4384204675 hasConcept C71924100 @default.
- W4384204675 hasConceptScore W4384204675C100548800 @default.
- W4384204675 hasConceptScore W4384204675C126838900 @default.
- W4384204675 hasConceptScore W4384204675C154945302 @default.
- W4384204675 hasConceptScore W4384204675C190892606 @default.
- W4384204675 hasConceptScore W4384204675C199343813 @default.
- W4384204675 hasConceptScore W4384204675C29694066 @default.
- W4384204675 hasConceptScore W4384204675C36454342 @default.
- W4384204675 hasConceptScore W4384204675C41008148 @default.
- W4384204675 hasConceptScore W4384204675C71924100 @default.
- W4384204675 hasLocation W43842046751 @default.
- W4384204675 hasOpenAccess W4384204675 @default.
- W4384204675 hasPrimaryLocation W43842046751 @default.
- W4384204675 hasRelatedWork W2062404272 @default.
- W4384204675 hasRelatedWork W2100293421 @default.
- W4384204675 hasRelatedWork W2116937361 @default.
- W4384204675 hasRelatedWork W2141291219 @default.
- W4384204675 hasRelatedWork W2227904920 @default.
- W4384204675 hasRelatedWork W2315965347 @default.
- W4384204675 hasRelatedWork W2326639392 @default.
- W4384204675 hasRelatedWork W2737589112 @default.
- W4384204675 hasRelatedWork W3077413350 @default.
- W4384204675 hasRelatedWork W4229735688 @default.
- W4384204675 isParatext "false" @default.
- W4384204675 isRetracted "false" @default.
- W4384204675 workType "article" @default.