Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384205791> ?p ?o ?g. }
- W4384205791 abstract "Virtual sample generation (VSG), as a cutting-edge technique, has been successfully applied in machine learning-assisted materials design and discovery. A virtual sample without experimental validation is defined as an unknown sample, which is either expanded from the original data distribution for modeling or designed via algorithms for predicting. This review aims to discuss the applications of VSG techniques in machine learning-assisted materials design and discovery based on the research progress in recent years. First, we summarize the commonly used VSG algorithms in materials design and discovery for data expansion of the training set, including Bootstrap, Monte Carlo, particle swarm optimization, mega trend diffusion, Gaussian mixture model, random forest, and generative adversarial networks. Next, frequently employed searching algorithms for materials discovery are introduced, including particle swarm optimization, efficient global optimization, and proactive searching progress. Then, universally adopted inverse design methods are presented, including genetic algorithm, Bayesian optimization, and pattern recognition inverse projection. Finally, the future directions of VSG in the design and discovery of materials are proposed." @default.
- W4384205791 created "2023-07-14" @default.
- W4384205791 creator A5027671551 @default.
- W4384205791 creator A5039377251 @default.
- W4384205791 creator A5049293052 @default.
- W4384205791 creator A5090222944 @default.
- W4384205791 date "2023-07-13" @default.
- W4384205791 modified "2023-10-06" @default.
- W4384205791 title "Virtual sample generation in machine learning assisted materials design and discovery" @default.
- W4384205791 cites W1970369518 @default.
- W4384205791 cites W1995212471 @default.
- W4384205791 cites W1996809377 @default.
- W4384205791 cites W2001994823 @default.
- W4384205791 cites W2010354425 @default.
- W4384205791 cites W2041823554 @default.
- W4384205791 cites W2151984197 @default.
- W4384205791 cites W2152115242 @default.
- W4384205791 cites W2168747298 @default.
- W4384205791 cites W2337110853 @default.
- W4384205791 cites W2465602825 @default.
- W4384205791 cites W2523785361 @default.
- W4384205791 cites W2575635117 @default.
- W4384205791 cites W2605315194 @default.
- W4384205791 cites W2756659234 @default.
- W4384205791 cites W2762833825 @default.
- W4384205791 cites W2789839940 @default.
- W4384205791 cites W2886966346 @default.
- W4384205791 cites W2917193084 @default.
- W4384205791 cites W2952832141 @default.
- W4384205791 cites W2972418846 @default.
- W4384205791 cites W2975600959 @default.
- W4384205791 cites W2983616756 @default.
- W4384205791 cites W2987201903 @default.
- W4384205791 cites W2998788451 @default.
- W4384205791 cites W3006523099 @default.
- W4384205791 cites W3014985939 @default.
- W4384205791 cites W3025322884 @default.
- W4384205791 cites W3032150799 @default.
- W4384205791 cites W3036776898 @default.
- W4384205791 cites W3080901374 @default.
- W4384205791 cites W3094704314 @default.
- W4384205791 cites W3095323294 @default.
- W4384205791 cites W3101477835 @default.
- W4384205791 cites W3108509366 @default.
- W4384205791 cites W3119346555 @default.
- W4384205791 cites W3124401852 @default.
- W4384205791 cites W3127949697 @default.
- W4384205791 cites W3129039627 @default.
- W4384205791 cites W3133517924 @default.
- W4384205791 cites W3135550937 @default.
- W4384205791 cites W3153316841 @default.
- W4384205791 cites W3155699321 @default.
- W4384205791 cites W3185520686 @default.
- W4384205791 cites W3196930325 @default.
- W4384205791 cites W3197774601 @default.
- W4384205791 cites W3206488388 @default.
- W4384205791 cites W3207596548 @default.
- W4384205791 cites W3210035924 @default.
- W4384205791 cites W3216759837 @default.
- W4384205791 cites W4210887105 @default.
- W4384205791 cites W4211182742 @default.
- W4384205791 cites W4214602196 @default.
- W4384205791 cites W4221096212 @default.
- W4384205791 cites W4224435304 @default.
- W4384205791 cites W4225975221 @default.
- W4384205791 cites W4239143397 @default.
- W4384205791 cites W4280530340 @default.
- W4384205791 cites W4280547735 @default.
- W4384205791 cites W4281631239 @default.
- W4384205791 cites W4281930068 @default.
- W4384205791 cites W4285179478 @default.
- W4384205791 cites W4286433619 @default.
- W4384205791 cites W4290887282 @default.
- W4384205791 cites W4293733672 @default.
- W4384205791 cites W4296612997 @default.
- W4384205791 cites W4303453688 @default.
- W4384205791 cites W4307900555 @default.
- W4384205791 cites W4310016453 @default.
- W4384205791 cites W4311216170 @default.
- W4384205791 cites W4311879944 @default.
- W4384205791 cites W4313236587 @default.
- W4384205791 cites W4317215121 @default.
- W4384205791 cites W4317388187 @default.
- W4384205791 cites W4317734463 @default.
- W4384205791 cites W4321107089 @default.
- W4384205791 cites W4360949780 @default.
- W4384205791 doi "https://doi.org/10.20517/jmi.2023.18" @default.
- W4384205791 hasPublicationYear "2023" @default.
- W4384205791 type Work @default.
- W4384205791 citedByCount "1" @default.
- W4384205791 countsByYear W43842057912023 @default.
- W4384205791 crossrefType "journal-article" @default.
- W4384205791 hasAuthorship W4384205791A5027671551 @default.
- W4384205791 hasAuthorship W4384205791A5039377251 @default.
- W4384205791 hasAuthorship W4384205791A5049293052 @default.
- W4384205791 hasAuthorship W4384205791A5090222944 @default.
- W4384205791 hasBestOaLocation W43842057911 @default.
- W4384205791 hasConcept C119857082 @default.
- W4384205791 hasConcept C124101348 @default.
- W4384205791 hasConcept C127413603 @default.