Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384205843> ?p ?o ?g. }
- W4384205843 abstract "To realize a real-time structural topology optimization (TO), it is essential to use the information during the TO process. A step-to-step training method is proposed to improve the deep learning model prediction accuracy based on the solid isotropic material with penalization (SIMP) TO method. By increasing the use of optimization history information (such as the structure density matrix), the step-to-step method improves the model utilization efficiency for each sample data. This training method can effectively improve the deep learning model prediction accuracy without increasing the sample set size. The step-to-step training method combines several independent deep learning models (sub-models). The sub-models could have the same model layers and hyperparameters. It can be trained in parallel to speed up the training process. During the deep learning model training process, these features reduce the difficulties in adjusting sub-model parameters and the model training time cost. Meanwhile, this method is achieved by the local end-to-end training process. During the deep learning model predicting process, the increase in total prediction time cost can be ignored. The trained deep learning models can predict the optimized structures in real time. Maximization of first eigenfrequency topology optimization problem with three constraint conditions is used to verify the effectiveness of the proposed training method. The method proposed in this study provides an implementation technology for the real-time TO of structures. The authors also provide the deep learning model code and the dataset in this manuscript (git-hub)." @default.
- W4384205843 created "2023-07-14" @default.
- W4384205843 creator A5007464892 @default.
- W4384205843 creator A5059986647 @default.
- W4384205843 creator A5080655174 @default.
- W4384205843 creator A5087036820 @default.
- W4384205843 date "2023-07-13" @default.
- W4384205843 modified "2023-10-14" @default.
- W4384205843 title "Real-time topology optimization based on convolutional neural network by using retrain skill" @default.
- W4384205843 cites W1572063013 @default.
- W4384205843 cites W1622676895 @default.
- W4384205843 cites W1678356000 @default.
- W4384205843 cites W1975363157 @default.
- W4384205843 cites W2023377641 @default.
- W4384205843 cites W2035290038 @default.
- W4384205843 cites W2046876290 @default.
- W4384205843 cites W2053826298 @default.
- W4384205843 cites W2054489423 @default.
- W4384205843 cites W2062523101 @default.
- W4384205843 cites W2068013004 @default.
- W4384205843 cites W2069697210 @default.
- W4384205843 cites W2085015317 @default.
- W4384205843 cites W2086674516 @default.
- W4384205843 cites W2092801729 @default.
- W4384205843 cites W2097117768 @default.
- W4384205843 cites W2112796928 @default.
- W4384205843 cites W2119847696 @default.
- W4384205843 cites W2122397978 @default.
- W4384205843 cites W2126092109 @default.
- W4384205843 cites W2137983211 @default.
- W4384205843 cites W2157331557 @default.
- W4384205843 cites W2194775991 @default.
- W4384205843 cites W2343508713 @default.
- W4384205843 cites W2803594690 @default.
- W4384205843 cites W2882993259 @default.
- W4384205843 cites W2962847739 @default.
- W4384205843 cites W2988966271 @default.
- W4384205843 cites W2990948695 @default.
- W4384205843 cites W3105070525 @default.
- W4384205843 cites W3106486741 @default.
- W4384205843 cites W3114517772 @default.
- W4384205843 cites W3120751998 @default.
- W4384205843 cites W3127032891 @default.
- W4384205843 cites W3148068072 @default.
- W4384205843 cites W3158252298 @default.
- W4384205843 cites W3161393309 @default.
- W4384205843 cites W3206867662 @default.
- W4384205843 cites W3217049684 @default.
- W4384205843 cites W4235765578 @default.
- W4384205843 cites W4247242767 @default.
- W4384205843 doi "https://doi.org/10.1007/s00366-023-01846-3" @default.
- W4384205843 hasPublicationYear "2023" @default.
- W4384205843 type Work @default.
- W4384205843 citedByCount "0" @default.
- W4384205843 crossrefType "journal-article" @default.
- W4384205843 hasAuthorship W4384205843A5007464892 @default.
- W4384205843 hasAuthorship W4384205843A5059986647 @default.
- W4384205843 hasAuthorship W4384205843A5080655174 @default.
- W4384205843 hasAuthorship W4384205843A5087036820 @default.
- W4384205843 hasBestOaLocation W43842058432 @default.
- W4384205843 hasConcept C108583219 @default.
- W4384205843 hasConcept C111919701 @default.
- W4384205843 hasConcept C11413529 @default.
- W4384205843 hasConcept C119857082 @default.
- W4384205843 hasConcept C126255220 @default.
- W4384205843 hasConcept C127413603 @default.
- W4384205843 hasConcept C135628077 @default.
- W4384205843 hasConcept C154945302 @default.
- W4384205843 hasConcept C189216461 @default.
- W4384205843 hasConcept C2776330181 @default.
- W4384205843 hasConcept C33923547 @default.
- W4384205843 hasConcept C41008148 @default.
- W4384205843 hasConcept C50644808 @default.
- W4384205843 hasConcept C66938386 @default.
- W4384205843 hasConcept C81363708 @default.
- W4384205843 hasConcept C8642999 @default.
- W4384205843 hasConcept C98045186 @default.
- W4384205843 hasConceptScore W4384205843C108583219 @default.
- W4384205843 hasConceptScore W4384205843C111919701 @default.
- W4384205843 hasConceptScore W4384205843C11413529 @default.
- W4384205843 hasConceptScore W4384205843C119857082 @default.
- W4384205843 hasConceptScore W4384205843C126255220 @default.
- W4384205843 hasConceptScore W4384205843C127413603 @default.
- W4384205843 hasConceptScore W4384205843C135628077 @default.
- W4384205843 hasConceptScore W4384205843C154945302 @default.
- W4384205843 hasConceptScore W4384205843C189216461 @default.
- W4384205843 hasConceptScore W4384205843C2776330181 @default.
- W4384205843 hasConceptScore W4384205843C33923547 @default.
- W4384205843 hasConceptScore W4384205843C41008148 @default.
- W4384205843 hasConceptScore W4384205843C50644808 @default.
- W4384205843 hasConceptScore W4384205843C66938386 @default.
- W4384205843 hasConceptScore W4384205843C81363708 @default.
- W4384205843 hasConceptScore W4384205843C8642999 @default.
- W4384205843 hasConceptScore W4384205843C98045186 @default.
- W4384205843 hasFunder F4320321001 @default.
- W4384205843 hasLocation W43842058431 @default.
- W4384205843 hasLocation W43842058432 @default.
- W4384205843 hasOpenAccess W4384205843 @default.
- W4384205843 hasPrimaryLocation W43842058431 @default.
- W4384205843 hasRelatedWork W2731899572 @default.