Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384207345> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4384207345 endingPage "18" @default.
- W4384207345 startingPage "8" @default.
- W4384207345 abstract "Key words: coefficient of internal heat conductivity, classical problems, Cauchy problem, small parameter method, second-order partial differential equation, inhomogeneity function Classical problems in various formulations have been solved by many authors (Cauchy, Dirichle, Neumann and others) for isotropic homogeneous bodies in the theory of elasticity. Such boundary value problems have been reduced to solving differential equations with constant coefficients [1-3; 5]. The paper considers the problem of thermal conduction of an inhomogeneous isotropic body, which leads to the solution of a second-order partial differential equation with variable coefficients (1.3). With sufficient smoothness of the variable coefficients, through transformations, as well as the characteristic equation, this second-order differential equation in a given region can be reduced to one of the following forms; elliptic, hyperbolic and parabolic. Here, the boundary value problem is reduced to solving a second order differential equation with variable parabolic coefficients. A small physical parameter is introduced, and a recurrent sequence of boundary value problems for the Cauchy boundary value problem is obtained in the article. When solving these boundary value problems, the general solution is represented as a series by formula (2.2) and under certain conditions depending on δ and σ the convergence of the series is proved and the solution is reduced to (5.4). In case of varying the inhomogeneity function f (x,y,z), a small physical parameter δ and a constant σ, a set of inhomogeneous isotropic bodies is obtained, the results of which will be compared with the results of homogeneous isotrpic bodies." @default.
- W4384207345 created "2023-07-14" @default.
- W4384207345 creator A5021107052 @default.
- W4384207345 date "2023-07-01" @default.
- W4384207345 modified "2023-10-06" @default.
- W4384207345 title "On a Method of Solving the Thermal Conductivity Equation of an Inhomogeneous Isotropic Body" @default.
- W4384207345 doi "https://doi.org/10.58726/27382923-ne2023.1-8" @default.
- W4384207345 hasPublicationYear "2023" @default.
- W4384207345 type Work @default.
- W4384207345 citedByCount "0" @default.
- W4384207345 crossrefType "journal-article" @default.
- W4384207345 hasAuthorship W4384207345A5021107052 @default.
- W4384207345 hasBestOaLocation W43842073451 @default.
- W4384207345 hasConcept C106947605 @default.
- W4384207345 hasConcept C111615704 @default.
- W4384207345 hasConcept C121332964 @default.
- W4384207345 hasConcept C134306372 @default.
- W4384207345 hasConcept C153635880 @default.
- W4384207345 hasConcept C163681178 @default.
- W4384207345 hasConcept C182310444 @default.
- W4384207345 hasConcept C184050105 @default.
- W4384207345 hasConcept C186219872 @default.
- W4384207345 hasConcept C186867907 @default.
- W4384207345 hasConcept C22219631 @default.
- W4384207345 hasConcept C26955809 @default.
- W4384207345 hasConcept C33923547 @default.
- W4384207345 hasConcept C51544822 @default.
- W4384207345 hasConcept C54067925 @default.
- W4384207345 hasConcept C62520636 @default.
- W4384207345 hasConcept C78045399 @default.
- W4384207345 hasConcept C93779851 @default.
- W4384207345 hasConceptScore W4384207345C106947605 @default.
- W4384207345 hasConceptScore W4384207345C111615704 @default.
- W4384207345 hasConceptScore W4384207345C121332964 @default.
- W4384207345 hasConceptScore W4384207345C134306372 @default.
- W4384207345 hasConceptScore W4384207345C153635880 @default.
- W4384207345 hasConceptScore W4384207345C163681178 @default.
- W4384207345 hasConceptScore W4384207345C182310444 @default.
- W4384207345 hasConceptScore W4384207345C184050105 @default.
- W4384207345 hasConceptScore W4384207345C186219872 @default.
- W4384207345 hasConceptScore W4384207345C186867907 @default.
- W4384207345 hasConceptScore W4384207345C22219631 @default.
- W4384207345 hasConceptScore W4384207345C26955809 @default.
- W4384207345 hasConceptScore W4384207345C33923547 @default.
- W4384207345 hasConceptScore W4384207345C51544822 @default.
- W4384207345 hasConceptScore W4384207345C54067925 @default.
- W4384207345 hasConceptScore W4384207345C62520636 @default.
- W4384207345 hasConceptScore W4384207345C78045399 @default.
- W4384207345 hasConceptScore W4384207345C93779851 @default.
- W4384207345 hasLocation W43842073451 @default.
- W4384207345 hasOpenAccess W4384207345 @default.
- W4384207345 hasPrimaryLocation W43842073451 @default.
- W4384207345 hasRelatedWork W1735010469 @default.
- W4384207345 hasRelatedWork W1989783238 @default.
- W4384207345 hasRelatedWork W2045532529 @default.
- W4384207345 hasRelatedWork W2053626238 @default.
- W4384207345 hasRelatedWork W2272074809 @default.
- W4384207345 hasRelatedWork W2373567731 @default.
- W4384207345 hasRelatedWork W2544961282 @default.
- W4384207345 hasRelatedWork W3035859479 @default.
- W4384207345 hasRelatedWork W4249658573 @default.
- W4384207345 hasRelatedWork W2050259678 @default.
- W4384207345 isParatext "false" @default.
- W4384207345 isRetracted "false" @default.
- W4384207345 workType "article" @default.