Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384207644> ?p ?o ?g. }
- W4384207644 abstract "Highly accurate positioning is a crucial prerequisite of multi Unmanned Aerial Vehicle close-formation flight for target tracking, formation keeping, and collision avoidance. Although the position of a UAV can be obtained through the Global Positioning System (GPS), it is difficult for a UAV to obtain highly accurate positioning data in a GPS-denied environment (e.g., a GPS jamming area, suburb, urban canyon, or mountain area); this may cause it to miss a tracking target or collide with another UAV. In particular, UAV close-formation control in GPS-denied environments faces difficulties owing to the low-accuracy position, close distance between vehicles, and nonholonomic dynamics of a UAV. In this paper, on the one hand, we develop an innovative UAV formation localization method to address the formation localization issues in GPS-denied environments; on the other hand, we design a novel reinforcement learning based algorithm to achieve the high-efficiency and robust performance of the controller. First, a novel Lidar-based localization algorithm is developed to measure the localization of each aircraft in the formation flight. In our solution, each UAV is equipped with Lidar as the position measurement sensor instead of the GPS module. The k-means algorithm is implemented to calculate the center point position of UAV. A novel formation position vector matching method is proposed to match center points with UAVs in the formation and estimate their position information. Second, a reinforcement learning based UAV formation control algorithm is developed by selecting the optimal policy to control UAV swarm to start and keep flying in a close formation of a specific geometry. Third, the innovative collision risk evaluation module is proposed to address the collision-free issues in the formation group. Finally, a novel experience replay method is also provided in this paper to enhance the learning efficiency. Experimental results validate the accuracy, effectiveness, and robustness of the proposed scheme." @default.
- W4384207644 created "2023-07-14" @default.
- W4384207644 creator A5008578950 @default.
- W4384207644 creator A5031021503 @default.
- W4384207644 creator A5042947574 @default.
- W4384207644 creator A5051439492 @default.
- W4384207644 creator A5052423223 @default.
- W4384207644 creator A5058010200 @default.
- W4384207644 creator A5078949281 @default.
- W4384207644 creator A5081336328 @default.
- W4384207644 date "2023-07-01" @default.
- W4384207644 modified "2023-10-16" @default.
- W4384207644 title "Reinforcement learning based UAV formation control in GPS-denied environment" @default.
- W4384207644 cites W1493644597 @default.
- W4384207644 cites W2031404716 @default.
- W4384207644 cites W2565954200 @default.
- W4384207644 cites W2791154838 @default.
- W4384207644 cites W2796483014 @default.
- W4384207644 cites W2891102204 @default.
- W4384207644 cites W2891903559 @default.
- W4384207644 cites W2907214660 @default.
- W4384207644 cites W2926397355 @default.
- W4384207644 cites W2944541151 @default.
- W4384207644 cites W2948452254 @default.
- W4384207644 cites W2958821073 @default.
- W4384207644 cites W3006182894 @default.
- W4384207644 cites W3012268014 @default.
- W4384207644 cites W3102133152 @default.
- W4384207644 cites W3112150283 @default.
- W4384207644 cites W3119164649 @default.
- W4384207644 cites W3120874379 @default.
- W4384207644 cites W3134697742 @default.
- W4384207644 cites W3135716286 @default.
- W4384207644 cites W3154328278 @default.
- W4384207644 cites W3160317590 @default.
- W4384207644 cites W3165280930 @default.
- W4384207644 cites W3172532596 @default.
- W4384207644 cites W3177601996 @default.
- W4384207644 cites W3183210514 @default.
- W4384207644 cites W3201954015 @default.
- W4384207644 cites W3209575760 @default.
- W4384207644 cites W3216849113 @default.
- W4384207644 cites W4205954621 @default.
- W4384207644 cites W4210366873 @default.
- W4384207644 cites W4210445430 @default.
- W4384207644 cites W4214940741 @default.
- W4384207644 cites W4220675579 @default.
- W4384207644 cites W4220849261 @default.
- W4384207644 cites W4285129552 @default.
- W4384207644 cites W4285605333 @default.
- W4384207644 cites W4287846132 @default.
- W4384207644 cites W4296819133 @default.
- W4384207644 cites W4300484471 @default.
- W4384207644 cites W4383066061 @default.
- W4384207644 doi "https://doi.org/10.1016/j.cja.2023.07.006" @default.
- W4384207644 hasPublicationYear "2023" @default.
- W4384207644 type Work @default.
- W4384207644 citedByCount "0" @default.
- W4384207644 crossrefType "journal-article" @default.
- W4384207644 hasAuthorship W4384207644A5008578950 @default.
- W4384207644 hasAuthorship W4384207644A5031021503 @default.
- W4384207644 hasAuthorship W4384207644A5042947574 @default.
- W4384207644 hasAuthorship W4384207644A5051439492 @default.
- W4384207644 hasAuthorship W4384207644A5052423223 @default.
- W4384207644 hasAuthorship W4384207644A5058010200 @default.
- W4384207644 hasAuthorship W4384207644A5078949281 @default.
- W4384207644 hasAuthorship W4384207644A5081336328 @default.
- W4384207644 hasBestOaLocation W43842076441 @default.
- W4384207644 hasConcept C10138342 @default.
- W4384207644 hasConcept C154945302 @default.
- W4384207644 hasConcept C162324750 @default.
- W4384207644 hasConcept C198082294 @default.
- W4384207644 hasConcept C205649164 @default.
- W4384207644 hasConcept C31972630 @default.
- W4384207644 hasConcept C41008148 @default.
- W4384207644 hasConcept C51399673 @default.
- W4384207644 hasConcept C60229501 @default.
- W4384207644 hasConcept C62649853 @default.
- W4384207644 hasConcept C76155785 @default.
- W4384207644 hasConcept C79403827 @default.
- W4384207644 hasConcept C97541855 @default.
- W4384207644 hasConceptScore W4384207644C10138342 @default.
- W4384207644 hasConceptScore W4384207644C154945302 @default.
- W4384207644 hasConceptScore W4384207644C162324750 @default.
- W4384207644 hasConceptScore W4384207644C198082294 @default.
- W4384207644 hasConceptScore W4384207644C205649164 @default.
- W4384207644 hasConceptScore W4384207644C31972630 @default.
- W4384207644 hasConceptScore W4384207644C41008148 @default.
- W4384207644 hasConceptScore W4384207644C51399673 @default.
- W4384207644 hasConceptScore W4384207644C60229501 @default.
- W4384207644 hasConceptScore W4384207644C62649853 @default.
- W4384207644 hasConceptScore W4384207644C76155785 @default.
- W4384207644 hasConceptScore W4384207644C79403827 @default.
- W4384207644 hasConceptScore W4384207644C97541855 @default.
- W4384207644 hasLocation W43842076441 @default.
- W4384207644 hasOpenAccess W4384207644 @default.
- W4384207644 hasPrimaryLocation W43842076441 @default.
- W4384207644 hasRelatedWork W1581382664 @default.
- W4384207644 hasRelatedWork W1865242774 @default.
- W4384207644 hasRelatedWork W1995736744 @default.