Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384207670> ?p ?o ?g. }
- W4384207670 endingPage "119956" @default.
- W4384207670 startingPage "119956" @default.
- W4384207670 abstract "The accurate estimation of fine particulate matter (PM2.5) is significant for both environmental protection and health assessment. However, the sparsity of monitoring stations poses a challenge to provide continuous and large-scale PM2.5 monitoring data. The extensive coverage and continuous spatial distribution of satellite remote sensing products make them popular for estimating ground-level PM2.5 concentrations through inversion modeling. Although aerosol optical thickness (AOD) is commonly utilized for modeling PM2.5 concentrations, achieving accurate and comprehensive PM2.5 estimation remains a significant challenge. One of the main limitations is the random missing data in AOD. In this study, we propose a two-stage model that combines satellite remote sensing and ground monitoring data to achieve AOD filling and PM2.5 estimations in Beijing-Tianjin-Hebei region. In the first stage, the daily full-coverage AOD was filled by the Light Gradient Boosting Machine (Light-GBM), and achieved a superior performance (R2: 0.93, RMSE: 0.043). In the second stage, a spatio-temporal feature extraction model for PM2.5 concentration estimation was designed based on graph neural network (GNN), namely the spatio-temporal estimation model (ST-GAT). Finally, the ST-GAT obtained the performance of R2 = 0.88, RMSE = 12.66 μg/m3, and MAE = 8.66 μg/m3 on five-fold cross-validation, and the results showed that the method could provide reliable full-coverage PM2.5 estimation." @default.
- W4384207670 created "2023-07-14" @default.
- W4384207670 creator A5000388086 @default.
- W4384207670 creator A5001759439 @default.
- W4384207670 creator A5043527499 @default.
- W4384207670 creator A5050034362 @default.
- W4384207670 creator A5054654880 @default.
- W4384207670 creator A5070600394 @default.
- W4384207670 creator A5071074705 @default.
- W4384207670 date "2023-09-01" @default.
- W4384207670 modified "2023-10-01" @default.
- W4384207670 title "Full-coverage estimation of PM2.5 in the Beijing-Tianjin-Hebei region by using a two-stage model" @default.
- W4384207670 cites W1599651906 @default.
- W4384207670 cites W2008641894 @default.
- W4384207670 cites W2017917631 @default.
- W4384207670 cites W2089433206 @default.
- W4384207670 cites W2138017294 @default.
- W4384207670 cites W2522547941 @default.
- W4384207670 cites W2742946820 @default.
- W4384207670 cites W2765614387 @default.
- W4384207670 cites W2798235234 @default.
- W4384207670 cites W2913491289 @default.
- W4384207670 cites W2954013437 @default.
- W4384207670 cites W2987433480 @default.
- W4384207670 cites W2990989151 @default.
- W4384207670 cites W2995340247 @default.
- W4384207670 cites W2996193080 @default.
- W4384207670 cites W3000260079 @default.
- W4384207670 cites W3004417816 @default.
- W4384207670 cites W3022901115 @default.
- W4384207670 cites W3025949386 @default.
- W4384207670 cites W3031035328 @default.
- W4384207670 cites W3032398021 @default.
- W4384207670 cites W3044909247 @default.
- W4384207670 cites W3082720439 @default.
- W4384207670 cites W3088297551 @default.
- W4384207670 cites W3091374042 @default.
- W4384207670 cites W3096846826 @default.
- W4384207670 cites W3108550173 @default.
- W4384207670 cites W3119196674 @default.
- W4384207670 cites W3119335550 @default.
- W4384207670 cites W3119704807 @default.
- W4384207670 cites W3122993262 @default.
- W4384207670 cites W3195830738 @default.
- W4384207670 cites W3211112775 @default.
- W4384207670 cites W3217348554 @default.
- W4384207670 cites W4205629319 @default.
- W4384207670 cites W4206901711 @default.
- W4384207670 cites W4211223394 @default.
- W4384207670 cites W4213077304 @default.
- W4384207670 cites W4221120193 @default.
- W4384207670 cites W4229452582 @default.
- W4384207670 cites W4281744857 @default.
- W4384207670 cites W4283075085 @default.
- W4384207670 cites W4283575287 @default.
- W4384207670 cites W4284993624 @default.
- W4384207670 cites W4287878590 @default.
- W4384207670 cites W4289342506 @default.
- W4384207670 cites W4297880095 @default.
- W4384207670 cites W4306965057 @default.
- W4384207670 cites W4307111907 @default.
- W4384207670 cites W4309774539 @default.
- W4384207670 cites W4310184639 @default.
- W4384207670 cites W4315607624 @default.
- W4384207670 cites W4321460084 @default.
- W4384207670 cites W4321793478 @default.
- W4384207670 cites W4322012338 @default.
- W4384207670 cites W4322102230 @default.
- W4384207670 cites W4360829843 @default.
- W4384207670 cites W4361269607 @default.
- W4384207670 cites W4362677264 @default.
- W4384207670 cites W4366416502 @default.
- W4384207670 cites W4367318743 @default.
- W4384207670 cites W4376619832 @default.
- W4384207670 doi "https://doi.org/10.1016/j.atmosenv.2023.119956" @default.
- W4384207670 hasPublicationYear "2023" @default.
- W4384207670 type Work @default.
- W4384207670 citedByCount "0" @default.
- W4384207670 crossrefType "journal-article" @default.
- W4384207670 hasAuthorship W4384207670A5000388086 @default.
- W4384207670 hasAuthorship W4384207670A5001759439 @default.
- W4384207670 hasAuthorship W4384207670A5043527499 @default.
- W4384207670 hasAuthorship W4384207670A5050034362 @default.
- W4384207670 hasAuthorship W4384207670A5054654880 @default.
- W4384207670 hasAuthorship W4384207670A5070600394 @default.
- W4384207670 hasAuthorship W4384207670A5071074705 @default.
- W4384207670 hasConcept C105795698 @default.
- W4384207670 hasConcept C109007969 @default.
- W4384207670 hasConcept C127413603 @default.
- W4384207670 hasConcept C139945424 @default.
- W4384207670 hasConcept C146357865 @default.
- W4384207670 hasConcept C146978453 @default.
- W4384207670 hasConcept C151730666 @default.
- W4384207670 hasConcept C153294291 @default.
- W4384207670 hasConcept C154945302 @default.
- W4384207670 hasConcept C166957645 @default.
- W4384207670 hasConcept C169258074 @default.
- W4384207670 hasConcept C18903297 @default.