Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384207888> ?p ?o ?g. }
- W4384207888 endingPage "103695" @default.
- W4384207888 startingPage "103695" @default.
- W4384207888 abstract "ZnS/CaZnOS:Mn2+ luminescent ceramic components exhibit both photoluminescence (PL) and mechanoluminescence (ML). A PL material luminesces upon optical irradiation, whereas ML material converts mechanical energy into optical energy. ML materials have important application prospects in new light sources, damage detection, healthcare and anti-counterfeit encryption. In this paper, we report the preparation of luminescent ZnS/CaZnOS:Mn2+ ceramic parts via vat photopolymerization 3D printing and discuss possible applications. We use manganese-doped zinc sulphide/zinc calcium oxysulfide powder as the raw luminescent ceramic powder and investigate the slurry preparation, vat photopolymerization 3D printing and sintering to fabricate photoluminescent and ML ceramic prototypes. The powder particle size was 9–10 μm, the coupling agent was 4 wt% silane (KH-570), and the photoinitiator was 2 wt% diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide. The result is a manganese-doped photosensitive slurry with uniform stability and fluidity, a solid content of 50 vol%, and a viscosity of 3 Pa·s. This slurry has excellent characteristics for vat photopolymerization 3D printing, with a penetration depth Cd = 35.03 μm and a theoretical exposure energy Ec = 2.26 mJ/cm2. ZnS/CaZnOS:Mn2+ parts manufactured in this study exhibit both PL when irradiated by a light source and ML when extruded and rubbed. The photon intensity as high as 200 × 105 is released from ZnS/CaZnOS:Mn2+ when irradiated at 339 nm, which is nearly 50% more than that released when irradiated at 290 nm. The intensity of ML photons emitted increases with the applied mechanical force, with up to 1700 intensity emitted. Conventional forming methods mainly involve coating parts with luminescent materials mixed with polydimethylsiloxane polymer, surrounding ZrO2 cores by a shell layer of ML hybrid material and other traditional processes, which cannot produce complex structures or provide long-lasting luminescence. This study thus combines the luminescent material ZnS/CaZnOS:Mn2+ and vat photopolymerization 3D printing to produce complex parts with low surface roughness (Sa = 5.92 μm and Sz = 53.11 μm before sintering, and Sa = 5.09 μm and Sz = 50.73 μm after sintering) and high chemical stability. These results expand the applications of ZnS/CaZnOS-based luminescent ceramic materials and vat photopolymerization 3D printing." @default.
- W4384207888 created "2023-07-14" @default.
- W4384207888 creator A5001912977 @default.
- W4384207888 creator A5002250184 @default.
- W4384207888 creator A5014895894 @default.
- W4384207888 creator A5016082098 @default.
- W4384207888 creator A5018706886 @default.
- W4384207888 creator A5053300478 @default.
- W4384207888 creator A5060816627 @default.
- W4384207888 creator A5078666701 @default.
- W4384207888 creator A5087549124 @default.
- W4384207888 creator A5091383290 @default.
- W4384207888 date "2023-07-01" @default.
- W4384207888 modified "2023-10-17" @default.
- W4384207888 title "Photopolymerization 3D printing of luminescent ceramics" @default.
- W4384207888 cites W1789271509 @default.
- W4384207888 cites W2002882252 @default.
- W4384207888 cites W2125554580 @default.
- W4384207888 cites W2771061548 @default.
- W4384207888 cites W2900234023 @default.
- W4384207888 cites W2900429435 @default.
- W4384207888 cites W2920925487 @default.
- W4384207888 cites W2951248663 @default.
- W4384207888 cites W3000762689 @default.
- W4384207888 cites W3012750861 @default.
- W4384207888 cites W3087533541 @default.
- W4384207888 cites W3111739612 @default.
- W4384207888 cites W3113898787 @default.
- W4384207888 cites W3128388473 @default.
- W4384207888 cites W3150592967 @default.
- W4384207888 cites W3204747477 @default.
- W4384207888 cites W4206330311 @default.
- W4384207888 cites W4242358326 @default.
- W4384207888 cites W4293564695 @default.
- W4384207888 cites W4313655569 @default.
- W4384207888 doi "https://doi.org/10.1016/j.addma.2023.103695" @default.
- W4384207888 hasPublicationYear "2023" @default.
- W4384207888 type Work @default.
- W4384207888 citedByCount "0" @default.
- W4384207888 crossrefType "journal-article" @default.
- W4384207888 hasAuthorship W4384207888A5001912977 @default.
- W4384207888 hasAuthorship W4384207888A5002250184 @default.
- W4384207888 hasAuthorship W4384207888A5014895894 @default.
- W4384207888 hasAuthorship W4384207888A5016082098 @default.
- W4384207888 hasAuthorship W4384207888A5018706886 @default.
- W4384207888 hasAuthorship W4384207888A5053300478 @default.
- W4384207888 hasAuthorship W4384207888A5060816627 @default.
- W4384207888 hasAuthorship W4384207888A5078666701 @default.
- W4384207888 hasAuthorship W4384207888A5087549124 @default.
- W4384207888 hasAuthorship W4384207888A5091383290 @default.
- W4384207888 hasConcept C111337013 @default.
- W4384207888 hasConcept C121332964 @default.
- W4384207888 hasConcept C124385694 @default.
- W4384207888 hasConcept C127413603 @default.
- W4384207888 hasConcept C128996297 @default.
- W4384207888 hasConcept C134132462 @default.
- W4384207888 hasConcept C148869448 @default.
- W4384207888 hasConcept C15487406 @default.
- W4384207888 hasConcept C159985019 @default.
- W4384207888 hasConcept C166940927 @default.
- W4384207888 hasConcept C185544564 @default.
- W4384207888 hasConcept C191897082 @default.
- W4384207888 hasConcept C192562407 @default.
- W4384207888 hasConcept C2779219880 @default.
- W4384207888 hasConcept C2780634384 @default.
- W4384207888 hasConcept C42360764 @default.
- W4384207888 hasConcept C44228677 @default.
- W4384207888 hasConcept C49040817 @default.
- W4384207888 hasConcept C521977710 @default.
- W4384207888 hasConcept C535196362 @default.
- W4384207888 hasConcept C85080765 @default.
- W4384207888 hasConcept C94293008 @default.
- W4384207888 hasConceptScore W4384207888C111337013 @default.
- W4384207888 hasConceptScore W4384207888C121332964 @default.
- W4384207888 hasConceptScore W4384207888C124385694 @default.
- W4384207888 hasConceptScore W4384207888C127413603 @default.
- W4384207888 hasConceptScore W4384207888C128996297 @default.
- W4384207888 hasConceptScore W4384207888C134132462 @default.
- W4384207888 hasConceptScore W4384207888C148869448 @default.
- W4384207888 hasConceptScore W4384207888C15487406 @default.
- W4384207888 hasConceptScore W4384207888C159985019 @default.
- W4384207888 hasConceptScore W4384207888C166940927 @default.
- W4384207888 hasConceptScore W4384207888C185544564 @default.
- W4384207888 hasConceptScore W4384207888C191897082 @default.
- W4384207888 hasConceptScore W4384207888C192562407 @default.
- W4384207888 hasConceptScore W4384207888C2779219880 @default.
- W4384207888 hasConceptScore W4384207888C2780634384 @default.
- W4384207888 hasConceptScore W4384207888C42360764 @default.
- W4384207888 hasConceptScore W4384207888C44228677 @default.
- W4384207888 hasConceptScore W4384207888C49040817 @default.
- W4384207888 hasConceptScore W4384207888C521977710 @default.
- W4384207888 hasConceptScore W4384207888C535196362 @default.
- W4384207888 hasConceptScore W4384207888C85080765 @default.
- W4384207888 hasConceptScore W4384207888C94293008 @default.
- W4384207888 hasLocation W43842078881 @default.
- W4384207888 hasOpenAccess W4384207888 @default.
- W4384207888 hasPrimaryLocation W43842078881 @default.
- W4384207888 hasRelatedWork W1999561255 @default.