Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384207893> ?p ?o ?g. }
- W4384207893 abstract "Introduction and objectives: A new computed tomography-derived fractional flow reserve (CT-FFR) technique with a “coarse-to-fine subpixel” algorithm has been developed to generate precise lumen contours. The aim of this study was to assess the diagnostic performance of this new CT-FFR algorithm for discriminating lesion-specific ischemia using wire-based FFR ≤ 0.80 as the reference standard in patients with coronary artery disease. Methods: This prospective, multicenter study screened 330 patients undergoing coronary CT angiography (CCTA) and invasive FFR (median interval 2 days) from 6 tertiary hospitals. CT-FFR was evaluated in a blinded fashion with a “coarse-to-fine subpixel” algorithm for lumen contour. Results: Between March 2019 and May 2020, we included 316 patients with 324 vessels. There was a good correlation between CT-FFR and invasive FFR (r = 0.76, P < .001). The diagnostic sensitivity, specificity, and accuracy on a per-vessel level were 95.3%, 89.8%, and 92.0% for CT-FFR, and 96.4%, 26.4%, and 53.1% for CCTA > 50% stenosis, respectively. CT-FFR showed improved discrimination of ischemia compared with CCTA alone overall (AUC, 0.95 vs 0.74, P < .001) and in intermediate (AUC, 0.96 vs 0.62, P < .001) and “gray zone” lesions (AUC, 0.88 vs 0.61, P < .001). The diagnostic specificity, accuracy, and AUC for CT-FFR (71.9%, 82.8%, and 0.84) outperformed CCTA (9.4%, 48.3%, and 0.66) in patients or in vessels with severe calcification (all P < .05). Conclusions: CT-FFR with a new “coarse-to-fine subpixel” algorithm showed high performance in identifying hemodynamically significant stenosis. The diagnostic performance of CT-FFR was superior to that of CCTA in intermediate lesions, “gray zone” lesions, and severely calcified lesions. Clinical Trial Register: NCT04731285 Introducción y objetivos: Se ha desarrollado una nueva técnica basada en tomografía computarizada para la evaluación de la reserva fraccional de flujo (TC-RFF) con un algoritmo de subpíxel «de grueso a fino» para generar contornos luminales precisos. El objetivo de este estudio es evaluar el rendimiento diagnóstico de este nuevo algoritmo de TC-RFF para discriminar la isquemia específica de lesión utilizando la evaluación invasiva de la RFF ≤ 0,80 como referencia en pacientes con enfermedad coronaria. Métodos: Este estudio prospectivo y multicéntrico evaluó a 330 pacientes sometidos a angiografía coronaria no invasiva con TC (ACTC) y evaluación invasiva de la RFF (mediana del intervalo, 2 días) en 6 hospitales terciarios. La TC-RFF se evaluó a ciegas con un algoritmo de subpíxel «de grueso a fino» para la evaluación de la luz. Resultados: Entre marzo de 2019 y mayo de 2020, se incluyó a un total de 316 pacientes con 324 vasos. Hubo una buena correlación entre la TC-RFF y la evaluación invasiva de la RFF (r = 0,76; p < 0,001). La sensibilidad, la especificidad y la exactitud diagnóstica por vaso fueron, respectivamente, del 95,3, el 89,8 y el 92,0% para la TC-RFF y del 96,4, el 26,4 y el 53,1% para la ACTC para las estenosis > 50%. La TC-RFF mostró mejor discriminación de la isquemia que la ACTC sola en general (ABC = 0,95 frente a ABC = 0,74; p < 0,001) y en lesiones intermedias (ABC = 0,96 frente a ABC = 0,62; p < 0,001) y en «zona gris» (ABC = 0,88 frente a ABC = 0,61; p < 0,001). La especificidad, la exactitud y el ABC diagnóstica de la TC-RFF (el 71,9%, el 82,8% y 0,84) superaron las de la ACTC (el 9,4%, el 48,3% y 0,66) en pacientes o vasos con calcificación grave (todos, p < 0,05). Conclusiones: La TC-RFF con un algoritmo de subpíxel «de grueso a fino» proporcionó un alto rendimiento en la identificación de estenosis hemodinámicamente significativas. El rendimiento diagnóstico de la TC-RFF fue superior al de la ACTC en lesiones intermedias, de «zona gris» y con calcificación grave." @default.
- W4384207893 created "2023-07-14" @default.
- W4384207893 creator A5002654097 @default.
- W4384207893 creator A5005765600 @default.
- W4384207893 creator A5024419531 @default.
- W4384207893 creator A5051610166 @default.
- W4384207893 creator A5053863018 @default.
- W4384207893 creator A5056941518 @default.
- W4384207893 creator A5057640513 @default.
- W4384207893 creator A5058010200 @default.
- W4384207893 creator A5074477404 @default.
- W4384207893 creator A5075495109 @default.
- W4384207893 creator A5077135617 @default.
- W4384207893 creator A5078164215 @default.
- W4384207893 creator A5079908947 @default.
- W4384207893 date "2023-07-01" @default.
- W4384207893 modified "2023-10-16" @default.
- W4384207893 title "Diagnostic accuracy of CT-FFR with a new coarse-to-fine subpixel algorithm in detecting lesion-specific ischemia: a prospective multicenter study" @default.
- W4384207893 cites W1147298420 @default.
- W4384207893 cites W1260204519 @default.
- W4384207893 cites W1484080302 @default.
- W4384207893 cites W1540562167 @default.
- W4384207893 cites W2095680098 @default.
- W4384207893 cites W2104708690 @default.
- W4384207893 cites W2112534549 @default.
- W4384207893 cites W2117785945 @default.
- W4384207893 cites W2118810625 @default.
- W4384207893 cites W2127649313 @default.
- W4384207893 cites W2166538393 @default.
- W4384207893 cites W2188834495 @default.
- W4384207893 cites W2190602582 @default.
- W4384207893 cites W2339278919 @default.
- W4384207893 cites W2530696279 @default.
- W4384207893 cites W2541908804 @default.
- W4384207893 cites W2766387840 @default.
- W4384207893 cites W2807965844 @default.
- W4384207893 cites W2968194066 @default.
- W4384207893 cites W2968216347 @default.
- W4384207893 cites W2973881155 @default.
- W4384207893 cites W3011371150 @default.
- W4384207893 cites W3108879878 @default.
- W4384207893 doi "https://doi.org/10.1016/j.rec.2023.05.008" @default.
- W4384207893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37453536" @default.
- W4384207893 hasPublicationYear "2023" @default.
- W4384207893 type Work @default.
- W4384207893 citedByCount "0" @default.
- W4384207893 crossrefType "journal-article" @default.
- W4384207893 hasAuthorship W4384207893A5002654097 @default.
- W4384207893 hasAuthorship W4384207893A5005765600 @default.
- W4384207893 hasAuthorship W4384207893A5024419531 @default.
- W4384207893 hasAuthorship W4384207893A5051610166 @default.
- W4384207893 hasAuthorship W4384207893A5053863018 @default.
- W4384207893 hasAuthorship W4384207893A5056941518 @default.
- W4384207893 hasAuthorship W4384207893A5057640513 @default.
- W4384207893 hasAuthorship W4384207893A5058010200 @default.
- W4384207893 hasAuthorship W4384207893A5074477404 @default.
- W4384207893 hasAuthorship W4384207893A5075495109 @default.
- W4384207893 hasAuthorship W4384207893A5077135617 @default.
- W4384207893 hasAuthorship W4384207893A5078164215 @default.
- W4384207893 hasAuthorship W4384207893A5079908947 @default.
- W4384207893 hasConcept C11413529 @default.
- W4384207893 hasConcept C126322002 @default.
- W4384207893 hasConcept C126838900 @default.
- W4384207893 hasConcept C131631996 @default.
- W4384207893 hasConcept C154945302 @default.
- W4384207893 hasConcept C160633673 @default.
- W4384207893 hasConcept C164705383 @default.
- W4384207893 hasConcept C188816634 @default.
- W4384207893 hasConcept C2777987666 @default.
- W4384207893 hasConcept C2778213512 @default.
- W4384207893 hasConcept C2780007028 @default.
- W4384207893 hasConcept C2989005 @default.
- W4384207893 hasConcept C3019004856 @default.
- W4384207893 hasConcept C3020132585 @default.
- W4384207893 hasConcept C33923547 @default.
- W4384207893 hasConcept C41008148 @default.
- W4384207893 hasConcept C500558357 @default.
- W4384207893 hasConcept C58471807 @default.
- W4384207893 hasConcept C68516990 @default.
- W4384207893 hasConcept C71924100 @default.
- W4384207893 hasConceptScore W4384207893C11413529 @default.
- W4384207893 hasConceptScore W4384207893C126322002 @default.
- W4384207893 hasConceptScore W4384207893C126838900 @default.
- W4384207893 hasConceptScore W4384207893C131631996 @default.
- W4384207893 hasConceptScore W4384207893C154945302 @default.
- W4384207893 hasConceptScore W4384207893C160633673 @default.
- W4384207893 hasConceptScore W4384207893C164705383 @default.
- W4384207893 hasConceptScore W4384207893C188816634 @default.
- W4384207893 hasConceptScore W4384207893C2777987666 @default.
- W4384207893 hasConceptScore W4384207893C2778213512 @default.
- W4384207893 hasConceptScore W4384207893C2780007028 @default.
- W4384207893 hasConceptScore W4384207893C2989005 @default.
- W4384207893 hasConceptScore W4384207893C3019004856 @default.
- W4384207893 hasConceptScore W4384207893C3020132585 @default.
- W4384207893 hasConceptScore W4384207893C33923547 @default.
- W4384207893 hasConceptScore W4384207893C41008148 @default.
- W4384207893 hasConceptScore W4384207893C500558357 @default.
- W4384207893 hasConceptScore W4384207893C58471807 @default.
- W4384207893 hasConceptScore W4384207893C68516990 @default.
- W4384207893 hasConceptScore W4384207893C71924100 @default.