Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384207908> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4384207908 endingPage "112360" @default.
- W4384207908 startingPage "112360" @default.
- W4384207908 abstract "Physics-informed neural networks (PINNs) have been widely applied in different fields due to their effectiveness in solving partial differential equations (PDEs). However, the accuracy and efficiency of PINNs need to be considerably improved for scientific and commercial purposes. To address this issue, we systematically propose a novel dimension-augmented physics-informed neural network (DaPINN), which simultaneously and significantly improves the accuracy and efficiency of the base PINN. In the DaPINN model, we manipulate the dimensionality of the network input by inserting additional sample features and then incorporate the expanded dimensionality into the loss function. Moreover, we verify the effectiveness of power series augmentation, Fourier series augmentation and replica augmentation in both forward and backward problems. In most experiments, the error of DaPINN is 1 ∼2 orders of magnitude lower than that of the base PINN. The results show that the DaPINN outperforms the original PINN in terms of both accuracy and efficiency with a reduced dependence on the number of sample points. We also discuss the computational complexity of the DaPINN, its network size implications, other implementations of the DaPINN and the compatibility of DaPINN's methods with residual-based adaptive refinement (RAR), self-adaptive physics-informed neural networks (SA-PINNs) and gradient-enhanced physics-informed neural networks (gPINNs)." @default.
- W4384207908 created "2023-07-14" @default.
- W4384207908 creator A5016923635 @default.
- W4384207908 creator A5020819987 @default.
- W4384207908 creator A5054492030 @default.
- W4384207908 creator A5079539570 @default.
- W4384207908 date "2023-10-01" @default.
- W4384207908 modified "2023-09-27" @default.
- W4384207908 title "A dimension-augmented physics-informed neural network (DaPINN) with high level accuracy and efficiency" @default.
- W4384207908 cites W1970454553 @default.
- W4384207908 cites W2018451090 @default.
- W4384207908 cites W2076030743 @default.
- W4384207908 cites W2125645174 @default.
- W4384207908 cites W2749028154 @default.
- W4384207908 cites W2890968382 @default.
- W4384207908 cites W2899283552 @default.
- W4384207908 cites W2948551291 @default.
- W4384207908 cites W3011806874 @default.
- W4384207908 cites W3014009018 @default.
- W4384207908 cites W3021668893 @default.
- W4384207908 cites W3026222427 @default.
- W4384207908 cites W3043516796 @default.
- W4384207908 cites W3047001618 @default.
- W4384207908 cites W3093990252 @default.
- W4384207908 cites W3099892132 @default.
- W4384207908 cites W3101260193 @default.
- W4384207908 cites W3153200540 @default.
- W4384207908 cites W3163993681 @default.
- W4384207908 cites W3176116059 @default.
- W4384207908 cites W3197271163 @default.
- W4384207908 cites W3209909540 @default.
- W4384207908 cites W3213201244 @default.
- W4384207908 cites W4220717841 @default.
- W4384207908 cites W4220775796 @default.
- W4384207908 cites W4221019179 @default.
- W4384207908 cites W4225269297 @default.
- W4384207908 cites W4226244456 @default.
- W4384207908 cites W4229015109 @default.
- W4384207908 cites W4283321413 @default.
- W4384207908 cites W4308979219 @default.
- W4384207908 doi "https://doi.org/10.1016/j.jcp.2023.112360" @default.
- W4384207908 hasPublicationYear "2023" @default.
- W4384207908 type Work @default.
- W4384207908 citedByCount "0" @default.
- W4384207908 crossrefType "journal-article" @default.
- W4384207908 hasAuthorship W4384207908A5016923635 @default.
- W4384207908 hasAuthorship W4384207908A5020819987 @default.
- W4384207908 hasAuthorship W4384207908A5054492030 @default.
- W4384207908 hasAuthorship W4384207908A5079539570 @default.
- W4384207908 hasBestOaLocation W43842079082 @default.
- W4384207908 hasConcept C105795698 @default.
- W4384207908 hasConcept C111030470 @default.
- W4384207908 hasConcept C11413529 @default.
- W4384207908 hasConcept C129848803 @default.
- W4384207908 hasConcept C142362112 @default.
- W4384207908 hasConcept C153349607 @default.
- W4384207908 hasConcept C154945302 @default.
- W4384207908 hasConcept C155512373 @default.
- W4384207908 hasConcept C202444582 @default.
- W4384207908 hasConcept C2775937380 @default.
- W4384207908 hasConcept C33676613 @default.
- W4384207908 hasConcept C33923547 @default.
- W4384207908 hasConcept C41008148 @default.
- W4384207908 hasConcept C50644808 @default.
- W4384207908 hasConceptScore W4384207908C105795698 @default.
- W4384207908 hasConceptScore W4384207908C111030470 @default.
- W4384207908 hasConceptScore W4384207908C11413529 @default.
- W4384207908 hasConceptScore W4384207908C129848803 @default.
- W4384207908 hasConceptScore W4384207908C142362112 @default.
- W4384207908 hasConceptScore W4384207908C153349607 @default.
- W4384207908 hasConceptScore W4384207908C154945302 @default.
- W4384207908 hasConceptScore W4384207908C155512373 @default.
- W4384207908 hasConceptScore W4384207908C202444582 @default.
- W4384207908 hasConceptScore W4384207908C2775937380 @default.
- W4384207908 hasConceptScore W4384207908C33676613 @default.
- W4384207908 hasConceptScore W4384207908C33923547 @default.
- W4384207908 hasConceptScore W4384207908C41008148 @default.
- W4384207908 hasConceptScore W4384207908C50644808 @default.
- W4384207908 hasLocation W43842079081 @default.
- W4384207908 hasLocation W43842079082 @default.
- W4384207908 hasOpenAccess W4384207908 @default.
- W4384207908 hasPrimaryLocation W43842079081 @default.
- W4384207908 hasRelatedWork W2028744487 @default.
- W4384207908 hasRelatedWork W2084326726 @default.
- W4384207908 hasRelatedWork W2104331088 @default.
- W4384207908 hasRelatedWork W2158027741 @default.
- W4384207908 hasRelatedWork W2347328928 @default.
- W4384207908 hasRelatedWork W2365179979 @default.
- W4384207908 hasRelatedWork W2375005589 @default.
- W4384207908 hasRelatedWork W2383909525 @default.
- W4384207908 hasRelatedWork W2389751554 @default.
- W4384207908 hasRelatedWork W4281553196 @default.
- W4384207908 hasVolume "491" @default.
- W4384207908 isParatext "false" @default.
- W4384207908 isRetracted "false" @default.
- W4384207908 workType "article" @default.