Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384207965> ?p ?o ?g. }
- W4384207965 endingPage "121628" @default.
- W4384207965 startingPage "121628" @default.
- W4384207965 abstract "Evaluating the lithium (Li) budget of alkaline to calc-alkaline melts and their co-existing mineral phases is crucial to understanding which magmatic or post-eruptive processes can influence the Li contents and isotopic compositions of volcanic deposits. This is also important to be able to better constrain how economically relevant Li deposits form. The lithium contents of many different eruptions from different tectonic settings (intraplate, subduction zone, extensional environment) and cooling environments (quenched, quickly cooled and slowly cooled) were studied by combining new and literature data that were obtained using LA-ICP-MS. We found that the Li concentrations in melt inclusions and re-entrants are independent of tectonic setting (hotspot, subduction zone and rifting) and rarely exceed 100 ppm. When melt inclusions are re-homogenised the Li concentration increases which can lead to the overestimation of the Li budget of a magma. The highest Li concentrations in the alkaline suite of samples were found in groundmass glass (reaching up to 318 ppm). The Li contents in the co-existing mineral phases decrease in the following order: biotite (0.8–99.3 ppm), plagioclase (0.9–25.1 ppm), clinopyroxene (0.6–31.0 ppm) and sanidine (0.5–38.7 ppm). The highest Li concentrations in the calc-alkaline suite of samples were found in the biotite crystals (10.2–2314 ppm) followed by the groundmass glass (2.1–176 ppm). The Li contents are lower in the other mineral phases, from plagioclase (1.4–35.0 ppm), quartz (3.2–21.1 ppm), olivine (1.0–16.3 ppm), sanidine (0.3–8.1 ppm) to clinopyroxene (0.7–21.8 ppm). The Li concentrations in groundmass glass and co-existing crystal phases are independent of the tectonic setting but appear to be more closely related to their cooling environment. To evaluate the influence of the different cooling environments the Li isotopic compositions (per mil deviation of 7Li/6Li ratio relative to L-SVEC reference material) of different eruptions were also determined. The Li isotopic compositions of groundmass glass and mineral phases reveal a range in δ7Li composition spanning up to 6 ‰ for alkaline samples and >10‰ between bulk sample and mineral phases for calc-alkaline samples. The cooling environment of the samples has a large impact on the Li isotopic compositions of the mineral phases with only quartz seemingly unaffected. Rapidly quenched samples may retain their magmatic δ7Li compositions or will only experience small amounts of diffusional overprinting (e.g., by degassing) whereas slowly cooled samples will experience a prolonged diffusional exchange between minerals and matrix overprinting their magmatic δ7Li compositions. The Li inventory in quartz crystals may be influenced by the tectonic setting and water concentration in the crystals. To further assess the influence of tectonic settings on Li behaviour we used a large data set which is based on the 13 alkaline to calc-alkaline eruptions from different tectonic settings and calculated the apparent partition coefficients (Kds) between groundmass glass and co-existing mineral phases. Biotite crystals (alkaline systems) return the highest Kds (subduction-extensional setting: 0.01–0.57, oceanic hotspot: 0.17–2.65) whereas sanidine crystals yield the lowest Kds. Sanidines from the subduction-extensional setting (alkaline trend) have the lowest Kds (0.01–0.07; one outlier ranging from 0.02 to 0.24), followed by the oceanic hotspot setting (alkaline trend, 0.02–0.09) and the extensional setting (calc-alkaline trend; 0.01–0.15). Plagioclase crystals from the subduction-extensional setting (alkaline trend) yield Kds between 0.01 and 0.29, crystals from subduction zone settings (0.06–0.81) and extensional settings (0.09–0.50) have larger ranges in their Kds. The clinopyroxene crystals from the subduction zone settings (calc-alkaline trend) have the largest range in Kds (0.03–0.99), followed by the oceanic hotspot setting (alkaline trend, 0.06–0.48) and subduction-extensional setting (alkaline trend, 0.01–0.22). Quartz crystals (only from the calc-alkaline trend) from subduction zone settings have lower Kds (0.09–0.13) compared to the extensional settings (Bishop Tuff: 0.14–0.28; Caetano Tuff: 0.73–0.94). The wide variety of processes that can affect final Li abundances in melt and crystals (degassing, scavenging into fluids, intra-crystal diffusion, hydration of glasses) makes estimating the partition coefficients particularly difficult and results in the wide ranges observed here. Targeted experimental work would thus help to better constrain the behaviour of Li in alkaline compositions." @default.
- W4384207965 created "2023-07-14" @default.
- W4384207965 creator A5000079226 @default.
- W4384207965 creator A5002824992 @default.
- W4384207965 creator A5060994051 @default.
- W4384207965 creator A5068495143 @default.
- W4384207965 creator A5091114253 @default.
- W4384207965 date "2023-10-01" @default.
- W4384207965 modified "2023-10-03" @default.
- W4384207965 title "Partitioning and isotopic fractionation of Li between mineral phases and alkaline to calc-alkaline melts of explosive and effusive eruptions" @default.
- W4384207965 cites W1965260509 @default.
- W4384207965 cites W1966340877 @default.
- W4384207965 cites W1969859799 @default.
- W4384207965 cites W1971831894 @default.
- W4384207965 cites W1974774627 @default.
- W4384207965 cites W1975917075 @default.
- W4384207965 cites W1975951422 @default.
- W4384207965 cites W1981436340 @default.
- W4384207965 cites W1983853727 @default.
- W4384207965 cites W1988032601 @default.
- W4384207965 cites W1989690253 @default.
- W4384207965 cites W1989706724 @default.
- W4384207965 cites W1990017452 @default.
- W4384207965 cites W1990542169 @default.
- W4384207965 cites W1990776469 @default.
- W4384207965 cites W1991442438 @default.
- W4384207965 cites W1992920378 @default.
- W4384207965 cites W1998663963 @default.
- W4384207965 cites W2000975079 @default.
- W4384207965 cites W2002673413 @default.
- W4384207965 cites W2004485984 @default.
- W4384207965 cites W2007243168 @default.
- W4384207965 cites W2015916518 @default.
- W4384207965 cites W2018391865 @default.
- W4384207965 cites W2019049432 @default.
- W4384207965 cites W2019751060 @default.
- W4384207965 cites W2021679009 @default.
- W4384207965 cites W2023424388 @default.
- W4384207965 cites W2023456682 @default.
- W4384207965 cites W2026356562 @default.
- W4384207965 cites W2028941472 @default.
- W4384207965 cites W2029399767 @default.
- W4384207965 cites W2033639081 @default.
- W4384207965 cites W2033666939 @default.
- W4384207965 cites W2036920064 @default.
- W4384207965 cites W2037458998 @default.
- W4384207965 cites W2039236992 @default.
- W4384207965 cites W2041601062 @default.
- W4384207965 cites W2044446041 @default.
- W4384207965 cites W2046406137 @default.
- W4384207965 cites W2047829848 @default.
- W4384207965 cites W2048233298 @default.
- W4384207965 cites W2048562994 @default.
- W4384207965 cites W2051199006 @default.
- W4384207965 cites W2051222055 @default.
- W4384207965 cites W2052126871 @default.
- W4384207965 cites W2057683220 @default.
- W4384207965 cites W2060548219 @default.
- W4384207965 cites W2061699196 @default.
- W4384207965 cites W2063574244 @default.
- W4384207965 cites W2063948740 @default.
- W4384207965 cites W2066600867 @default.
- W4384207965 cites W2068548017 @default.
- W4384207965 cites W2070259496 @default.
- W4384207965 cites W2071595664 @default.
- W4384207965 cites W2073686412 @default.
- W4384207965 cites W2073933929 @default.
- W4384207965 cites W2077680773 @default.
- W4384207965 cites W2078418919 @default.
- W4384207965 cites W2079316320 @default.
- W4384207965 cites W2079848442 @default.
- W4384207965 cites W2080813174 @default.
- W4384207965 cites W2081723971 @default.
- W4384207965 cites W2085299924 @default.
- W4384207965 cites W2090896128 @default.
- W4384207965 cites W2091545124 @default.
- W4384207965 cites W2095976142 @default.
- W4384207965 cites W2103323851 @default.
- W4384207965 cites W2107688672 @default.
- W4384207965 cites W2108126573 @default.
- W4384207965 cites W2108641227 @default.
- W4384207965 cites W2109078251 @default.
- W4384207965 cites W2110242943 @default.
- W4384207965 cites W2110830978 @default.
- W4384207965 cites W2113165359 @default.
- W4384207965 cites W2116080110 @default.
- W4384207965 cites W2122342786 @default.
- W4384207965 cites W2127032539 @default.
- W4384207965 cites W2135991059 @default.
- W4384207965 cites W2136863770 @default.
- W4384207965 cites W2138147209 @default.
- W4384207965 cites W2139390719 @default.
- W4384207965 cites W2139908183 @default.
- W4384207965 cites W2140900950 @default.
- W4384207965 cites W2142334614 @default.
- W4384207965 cites W2157566689 @default.
- W4384207965 cites W2158909637 @default.
- W4384207965 cites W2161121139 @default.