Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384208094> ?p ?o ?g. }
- W4384208094 endingPage "103475" @default.
- W4384208094 startingPage "103475" @default.
- W4384208094 abstract "Brain imaging with [18F]FDG-PET can support the diagnostic work-up of patients with α-synucleinopathies. Validated data analysis approaches are necessary to evaluate disease-specific brain metabolism patterns in neurodegenerative disorders. This study compared the univariate Statistical Parametric Mapping (SPM) single-subject procedure and the multivariate Scaled Subprofile Model/Principal Component Analysis (SSM/PCA) in a cohort of patients with α-synucleinopathies.We included [18F]FDG-PET scans of 122 subjects within the α-synucleinopathy spectrum: Parkinson's Disease (PD) normal cognition on long-term follow-up (PD - low risk to dementia (LDR); n = 28), PD who developed dementia on clinical follow-up (PD - high risk of dementia (HDR); n = 16), Dementia with Lewy Bodies (DLB; n = 67), and Multiple System Atrophy (MSA; n = 11). We also included [18F]FDG-PET scans of isolated REM sleep behaviour disorder (iRBD; n = 51) subjects with a high risk of developing a manifest α-synucleinopathy. Each [18F]FDG-PET scan was compared with 112 healthy controls using SPM procedures. In the SSM/PCA approach, we computed the individual scores of previously identified patterns for PD, DLB, and MSA: PD-related patterns (PDRP), DLBRP, and MSARP. We used ROC curves to compare the diagnostic performances of SPM t-maps (visual rating) and SSM/PCA individual pattern scores in identifying each clinical condition across the spectrum. Specifically, we used the clinical diagnoses (gold standard) as our reference in ROC curves to evaluate the accuracy of the two methods. Experts in movement disorders and dementia made all the diagnoses according to the current clinical criteria of each disease (PD, DLB and MSA).The visual rating of SPM t-maps showed higher performance (AUC: 0.995, specificity: 0.989, sensitivity 1.000) than PDRP z-scores (AUC: 0.818, specificity: 0.734, sensitivity 1.000) in differentiating PD-LDR from other α-synucleinopathies (PD-HDR, DLB and MSA). This result was mainly driven by the ability of SPM t-maps to reveal the limited or absent brain hypometabolism characteristics of PD-LDR. Both SPM t-maps visual rating and SSM/PCA z-scores showed high performance in identifying DLB (DLBRP = AUC: 0.909, specificity: 0.873, sensitivity 0.866; SPM t-maps = AUC: 0.892, specificity: 0.872, sensitivity 0.910) and MSA (MSARP: AUC: 0.921, specificity: 0.811, sensitivity 1.000; SPM t-maps: AUC: 1.000, specificity: 1.000, sensitivity 1.000) from other α-synucleinopathies. PD-HDR and DLB were comparable for the brain hypo and hypermetabolism patterns, thus not allowing differentiation by SPM t-maps or SSM/PCA. Of note, we found a gradual increase of PDRP and DLBRP expression in the continuum from iRBD to PD-HDR and DLB, where the DLB patients had the highest scores. SSM/PCA could differentiate iRBD from DLB, reflecting specifically the differences in disease staging and severity (AUC: 0.938, specificity: 0.821, sensitivity 0.941).SPM-single subject maps and SSM/PCA are both valid methods in supporting diagnosis within the α-synucleinopathy spectrum, with different strengths and pitfalls. The former reveals dysfunctional brain topographies at the individual level with high accuracy for all the specific subtype patterns, and particularly also the normal maps; the latter provides a reliable quantification, independent from the rater experience, particularly in tracking the disease severity and staging. Thus, our findings suggest that differences in data analysis approaches exist and should be considered in clinical settings. However, combining both methods might offer the best diagnostic performance." @default.
- W4384208094 created "2023-07-14" @default.
- W4384208094 creator A5001853762 @default.
- W4384208094 creator A5004228121 @default.
- W4384208094 creator A5016812037 @default.
- W4384208094 creator A5032684903 @default.
- W4384208094 creator A5039716122 @default.
- W4384208094 creator A5043715991 @default.
- W4384208094 creator A5058391299 @default.
- W4384208094 creator A5072393749 @default.
- W4384208094 creator A5076606508 @default.
- W4384208094 creator A5089967868 @default.
- W4384208094 date "2023-01-01" @default.
- W4384208094 modified "2023-10-06" @default.
- W4384208094 title "Comparison of univariate and multivariate analyses for brain [18F]FDG PET data in α-synucleinopathies" @default.
- W4384208094 cites W1491162928 @default.
- W4384208094 cites W1514787893 @default.
- W4384208094 cites W1530490147 @default.
- W4384208094 cites W1873640461 @default.
- W4384208094 cites W1909000419 @default.
- W4384208094 cites W1965123421 @default.
- W4384208094 cites W1965618373 @default.
- W4384208094 cites W1975914990 @default.
- W4384208094 cites W1979701414 @default.
- W4384208094 cites W1993608820 @default.
- W4384208094 cites W1994605917 @default.
- W4384208094 cites W1997230335 @default.
- W4384208094 cites W2016109926 @default.
- W4384208094 cites W2022036303 @default.
- W4384208094 cites W2040042139 @default.
- W4384208094 cites W2048207814 @default.
- W4384208094 cites W2058415227 @default.
- W4384208094 cites W2072799365 @default.
- W4384208094 cites W2077398422 @default.
- W4384208094 cites W2089522371 @default.
- W4384208094 cites W2095309401 @default.
- W4384208094 cites W2096652256 @default.
- W4384208094 cites W2107172544 @default.
- W4384208094 cites W2107733717 @default.
- W4384208094 cites W2112455323 @default.
- W4384208094 cites W2113502567 @default.
- W4384208094 cites W2120571685 @default.
- W4384208094 cites W2125109427 @default.
- W4384208094 cites W2134268004 @default.
- W4384208094 cites W2151523540 @default.
- W4384208094 cites W2155299862 @default.
- W4384208094 cites W2156411508 @default.
- W4384208094 cites W2160813944 @default.
- W4384208094 cites W2172224325 @default.
- W4384208094 cites W2226581991 @default.
- W4384208094 cites W2281923782 @default.
- W4384208094 cites W2522618291 @default.
- W4384208094 cites W2559809511 @default.
- W4384208094 cites W2571392422 @default.
- W4384208094 cites W2586486440 @default.
- W4384208094 cites W2593585271 @default.
- W4384208094 cites W2599538630 @default.
- W4384208094 cites W2605186647 @default.
- W4384208094 cites W2614974832 @default.
- W4384208094 cites W2623521763 @default.
- W4384208094 cites W2736807184 @default.
- W4384208094 cites W2736961418 @default.
- W4384208094 cites W2768364432 @default.
- W4384208094 cites W2773780551 @default.
- W4384208094 cites W2789220454 @default.
- W4384208094 cites W2792232945 @default.
- W4384208094 cites W2793712133 @default.
- W4384208094 cites W2796475975 @default.
- W4384208094 cites W2807819473 @default.
- W4384208094 cites W2830033597 @default.
- W4384208094 cites W2887312086 @default.
- W4384208094 cites W2900101988 @default.
- W4384208094 cites W2912061366 @default.
- W4384208094 cites W2924947794 @default.
- W4384208094 cites W2969976434 @default.
- W4384208094 cites W2989585163 @default.
- W4384208094 cites W3012139718 @default.
- W4384208094 cites W3017498209 @default.
- W4384208094 cites W3019139588 @default.
- W4384208094 cites W3019571323 @default.
- W4384208094 cites W3094104307 @default.
- W4384208094 cites W3119304774 @default.
- W4384208094 cites W3143125352 @default.
- W4384208094 cites W3154313988 @default.
- W4384208094 cites W4210969344 @default.
- W4384208094 cites W4229334521 @default.
- W4384208094 cites W4283066188 @default.
- W4384208094 cites W4286005709 @default.
- W4384208094 cites W4288456464 @default.
- W4384208094 cites W4294214983 @default.
- W4384208094 cites W4308809885 @default.
- W4384208094 cites W70687577 @default.
- W4384208094 doi "https://doi.org/10.1016/j.nicl.2023.103475" @default.
- W4384208094 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37494757" @default.
- W4384208094 hasPublicationYear "2023" @default.
- W4384208094 type Work @default.
- W4384208094 citedByCount "1" @default.
- W4384208094 countsByYear W43842080942023 @default.