Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384208319> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4384208319 abstract "INTRODUCTION: Knot theory has a long history, and as a branch of topology, it has received extensive attention. At present, the scientific analysis of data based on the similarity of Vassiliev invariants and knots under machine learning technology is the focus of the mathematical community. However, at present, there are some difficulties in the research work on the similarity of Vassiliev invariants and knots. These difficulties not only delay the progress of Vassiliev invariants research, but also slow down the speed of knot similarity research.OBJECTIVES: However, with the acceleration of the intelligent process, various intelligent technologies have been applied in the research of mathematics, biology and physics, providing excellent help for the research of many disciplines. Therefore, machine learning technology could be used to carry out new research on Vassiliev invariants and knot similarity.METHODS: Traditional knot analysis technology was combined with machine learning technology to find a more efficient and stable way of exploring Vassiliev invariants and knot similarity. his paper proposed a research method of data scientific analysis based on Vassiliev invariants and knot similarity under machine learning technology. Its purpose was to combine traditional knot research methods with machine learning technology to improve the efficiency of knot research. The algorithm proposed in this paper was the knot Vassiliev invariant analysis algorithm based on machine learning, which could use the intelligent and efficient analysis algorithm of machine learning technology to process the data of complex knots. This algorithm has improved the accuracy of the analysis of knot characteristics, and reduced the analysis time and the memory consumption at runtime.RESULTS: By testing the similarity between the Vassiliev invariant based on machine learning and the knot, the results showed that the analysis accuracy of the traditional Vassiliev invariant computing technology for the chiral characteristics, the number of intersections and the number of knots in the knot image was 84.25%, 83.27% and 85.56% respectively. The accuracy of knot Vassiliev invariant analysis algorithm based on machine learning for these indicators was 91.87%, 92.66% and 92.12% respectively. Obviously, the knot Vassiliev invariant analysis algorithm based on machine learning was superior to the traditional knot computing technology, and its analysis results were more excellent.CONCLUSION: In general, the research topic proposed in this paper has been proved to be of practical value. This research result proved that machine learning technology could play an excellent role in the current knot research, which correspondingly expanded the research direction of Vassiliev invariants and knot similarity." @default.
- W4384208319 created "2023-07-14" @default.
- W4384208319 creator A5032545255 @default.
- W4384208319 date "2023-06-29" @default.
- W4384208319 modified "2023-09-30" @default.
- W4384208319 title "Data science analysis of Vassiliev invariants and knot similarity based on distributed machine learning" @default.
- W4384208319 cites W2112196799 @default.
- W4384208319 cites W2464414913 @default.
- W4384208319 cites W2733962502 @default.
- W4384208319 cites W2747502945 @default.
- W4384208319 cites W2920882088 @default.
- W4384208319 cites W2962756411 @default.
- W4384208319 cites W2963111683 @default.
- W4384208319 cites W2963251877 @default.
- W4384208319 cites W2963739964 @default.
- W4384208319 cites W2980472264 @default.
- W4384208319 cites W3035382821 @default.
- W4384208319 cites W3099701903 @default.
- W4384208319 cites W3139853698 @default.
- W4384208319 cites W3208314969 @default.
- W4384208319 cites W331924745 @default.
- W4384208319 cites W4212876805 @default.
- W4384208319 doi "https://doi.org/10.4108/eetsis.3088" @default.
- W4384208319 hasPublicationYear "2023" @default.
- W4384208319 type Work @default.
- W4384208319 citedByCount "0" @default.
- W4384208319 crossrefType "journal-article" @default.
- W4384208319 hasAuthorship W4384208319A5032545255 @default.
- W4384208319 hasBestOaLocation W43842083191 @default.
- W4384208319 hasConcept C103278499 @default.
- W4384208319 hasConcept C115961682 @default.
- W4384208319 hasConcept C119857082 @default.
- W4384208319 hasConcept C127413603 @default.
- W4384208319 hasConcept C143330242 @default.
- W4384208319 hasConcept C153180895 @default.
- W4384208319 hasConcept C154945302 @default.
- W4384208319 hasConcept C180837527 @default.
- W4384208319 hasConcept C2779597229 @default.
- W4384208319 hasConcept C2779863119 @default.
- W4384208319 hasConcept C33923547 @default.
- W4384208319 hasConcept C36794415 @default.
- W4384208319 hasConcept C41008148 @default.
- W4384208319 hasConcept C42360764 @default.
- W4384208319 hasConcept C80444323 @default.
- W4384208319 hasConceptScore W4384208319C103278499 @default.
- W4384208319 hasConceptScore W4384208319C115961682 @default.
- W4384208319 hasConceptScore W4384208319C119857082 @default.
- W4384208319 hasConceptScore W4384208319C127413603 @default.
- W4384208319 hasConceptScore W4384208319C143330242 @default.
- W4384208319 hasConceptScore W4384208319C153180895 @default.
- W4384208319 hasConceptScore W4384208319C154945302 @default.
- W4384208319 hasConceptScore W4384208319C180837527 @default.
- W4384208319 hasConceptScore W4384208319C2779597229 @default.
- W4384208319 hasConceptScore W4384208319C2779863119 @default.
- W4384208319 hasConceptScore W4384208319C33923547 @default.
- W4384208319 hasConceptScore W4384208319C36794415 @default.
- W4384208319 hasConceptScore W4384208319C41008148 @default.
- W4384208319 hasConceptScore W4384208319C42360764 @default.
- W4384208319 hasConceptScore W4384208319C80444323 @default.
- W4384208319 hasLocation W43842083191 @default.
- W4384208319 hasOpenAccess W4384208319 @default.
- W4384208319 hasPrimaryLocation W43842083191 @default.
- W4384208319 hasRelatedWork W1540543711 @default.
- W4384208319 hasRelatedWork W2155527385 @default.
- W4384208319 hasRelatedWork W2892680669 @default.
- W4384208319 hasRelatedWork W2900994935 @default.
- W4384208319 hasRelatedWork W2944398340 @default.
- W4384208319 hasRelatedWork W2949451436 @default.
- W4384208319 hasRelatedWork W4251034835 @default.
- W4384208319 hasRelatedWork W4313524093 @default.
- W4384208319 hasRelatedWork W649926167 @default.
- W4384208319 hasRelatedWork W9631189 @default.
- W4384208319 isParatext "false" @default.
- W4384208319 isRetracted "false" @default.
- W4384208319 workType "article" @default.