Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384209924> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4384209924 endingPage "250" @default.
- W4384209924 startingPage "242" @default.
- W4384209924 abstract "The abstract should summarize the contents of the paper in short terms, i.e. 150–250 words. Massive MIMO and mmWave communications are utilized in 5G and 6G cellular networks to boost system capacity. In this article, a DL (Deep Learning) approach for mm-Wave massive MIMO systems based on LIS is proposed. The proposed technique was evaluated, and the results showed that it outperformed 10–1 than existing techniques such as Spatial Frequency CNN and Least Square." @default.
- W4384209924 created "2023-07-14" @default.
- W4384209924 creator A5091342894 @default.
- W4384209924 creator A5092465500 @default.
- W4384209924 date "2023-01-01" @default.
- W4384209924 modified "2023-09-25" @default.
- W4384209924 title "Channel Estimation of mmWave Massive MIMO Systems Using Large Intelligent Surfaces" @default.
- W4384209924 cites W2781054684 @default.
- W4384209924 cites W2937643630 @default.
- W4384209924 cites W3100218246 @default.
- W4384209924 cites W3134059753 @default.
- W4384209924 cites W3159402647 @default.
- W4384209924 cites W3161355088 @default.
- W4384209924 cites W3178995005 @default.
- W4384209924 cites W4221160263 @default.
- W4384209924 cites W4224312761 @default.
- W4384209924 doi "https://doi.org/10.1007/978-3-031-35644-5_19" @default.
- W4384209924 hasPublicationYear "2023" @default.
- W4384209924 type Work @default.
- W4384209924 citedByCount "0" @default.
- W4384209924 crossrefType "book-chapter" @default.
- W4384209924 hasAuthorship W4384209924A5091342894 @default.
- W4384209924 hasAuthorship W4384209924A5092465500 @default.
- W4384209924 hasConcept C127162648 @default.
- W4384209924 hasConcept C127413603 @default.
- W4384209924 hasConcept C207987634 @default.
- W4384209924 hasConcept C24326235 @default.
- W4384209924 hasConcept C41008148 @default.
- W4384209924 hasConcept C76155785 @default.
- W4384209924 hasConceptScore W4384209924C127162648 @default.
- W4384209924 hasConceptScore W4384209924C127413603 @default.
- W4384209924 hasConceptScore W4384209924C207987634 @default.
- W4384209924 hasConceptScore W4384209924C24326235 @default.
- W4384209924 hasConceptScore W4384209924C41008148 @default.
- W4384209924 hasConceptScore W4384209924C76155785 @default.
- W4384209924 hasLocation W43842099241 @default.
- W4384209924 hasOpenAccess W4384209924 @default.
- W4384209924 hasPrimaryLocation W43842099241 @default.
- W4384209924 hasRelatedWork W1984321950 @default.
- W4384209924 hasRelatedWork W2026727497 @default.
- W4384209924 hasRelatedWork W2058171123 @default.
- W4384209924 hasRelatedWork W2096098250 @default.
- W4384209924 hasRelatedWork W2170920731 @default.
- W4384209924 hasRelatedWork W2359317704 @default.
- W4384209924 hasRelatedWork W2486164642 @default.
- W4384209924 hasRelatedWork W2963159303 @default.
- W4384209924 hasRelatedWork W2988556066 @default.
- W4384209924 hasRelatedWork W4247271438 @default.
- W4384209924 isParatext "false" @default.
- W4384209924 isRetracted "false" @default.
- W4384209924 workType "book-chapter" @default.