Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384257647> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4384257647 endingPage "117372" @default.
- W4384257647 startingPage "117372" @default.
- W4384257647 abstract "This study aimed to investigate the multi-objective optimization of a Stirling cycle with a mathematical model that takes into account the dead volumes, effects of regenerative losses, and internal irreversibilities on the thermodynamic performance of the cycle. The optimization was carried out using the Artificial Bee Colony algorithm, which is a population-based metaheuristic method that mimics the foraging behavior of honeybees. The developed algorithm employs the concepts of Pareto frontier and ε-dominance to find the optimal solutions in the multi-objective space which is obtained with Artificial Bee Colony algorithm. The input parameters of the system are the maximum and minimum temperatures, compression and expansion volumes, and charge pressure which affect the thermodynamic variables of the cycle. The optimization process consisted of two stages: firstly, single-objective optimization was performed separately for each objective function to obtain the baseline results. Then, three different sets of triple-objective function groups were used to perform multi-objective optimization. These are Case 1 (net work output, thermal efficiency, irreversibility parameter), Case 2 (net work output, thermal efficiency, 2nd law efficiency), and Case 3 (net work output, thermal efficiency, entropy generation). The obtained results from the single and multi-objective optimizations were compared and analyzed. Since multi-objective optimization involves conflicting objectives, it does not result in a single optimal solution, but rather a set of optimal solutions that represent different trade-offs among the objectives. In order to achieve the optimum results with a good trade-off between solutions Pareto frontier method is used. In addition, to obtain a good distribution of solutions and filter very similar solution points in the solution space, ε-dominance was used to filter them. Finally, to select the final optimal solution from the Pareto frontier solution set, LINMAP was used as a decision-making tool which is a linear programming technique that assigns weights to each solution. The weights of the solutions are achieved according to the relative distance between objectives with their single optimal values achieved by single optimization. The best solution based on the net work output is achieved with Case 3 which includes entropy generation as different from other cases. Also, Case 3 has the lowest irreversibility parameter value even though the irreversibility parameter was optimized in Case 1. Entropy generation and mean effective pressure are quite sensitive due to the multiple solutions they have at each solution step when entropy generation is not an objective function." @default.
- W4384257647 created "2023-07-14" @default.
- W4384257647 creator A5058954720 @default.
- W4384257647 creator A5091607992 @default.
- W4384257647 date "2023-09-01" @default.
- W4384257647 modified "2023-09-24" @default.
- W4384257647 title "A metaheuristic approach for multi-objective optimization of the Stirling cycle with internal irreversibilities and regenerative losses using artificial bee colony algorithm" @default.
- W4384257647 cites W1966099889 @default.
- W4384257647 cites W1969003559 @default.
- W4384257647 cites W1977042441 @default.
- W4384257647 cites W1989068126 @default.
- W4384257647 cites W1990682258 @default.
- W4384257647 cites W1997104613 @default.
- W4384257647 cites W2025895125 @default.
- W4384257647 cites W2034176217 @default.
- W4384257647 cites W2051287465 @default.
- W4384257647 cites W2052941249 @default.
- W4384257647 cites W2061428286 @default.
- W4384257647 cites W2063375245 @default.
- W4384257647 cites W2066050601 @default.
- W4384257647 cites W2081500824 @default.
- W4384257647 cites W2114652055 @default.
- W4384257647 cites W2143560894 @default.
- W4384257647 cites W2216418492 @default.
- W4384257647 cites W2500367944 @default.
- W4384257647 cites W2552624440 @default.
- W4384257647 cites W2555209135 @default.
- W4384257647 cites W2884095268 @default.
- W4384257647 cites W2896110926 @default.
- W4384257647 cites W2922040769 @default.
- W4384257647 cites W2963172434 @default.
- W4384257647 cites W3035906921 @default.
- W4384257647 cites W3047968532 @default.
- W4384257647 cites W3086204659 @default.
- W4384257647 cites W3091602275 @default.
- W4384257647 cites W3096776546 @default.
- W4384257647 cites W3161776808 @default.
- W4384257647 cites W602661508 @default.
- W4384257647 doi "https://doi.org/10.1016/j.enconman.2023.117372" @default.
- W4384257647 hasPublicationYear "2023" @default.
- W4384257647 type Work @default.
- W4384257647 citedByCount "0" @default.
- W4384257647 crossrefType "journal-article" @default.
- W4384257647 hasAuthorship W4384257647A5058954720 @default.
- W4384257647 hasAuthorship W4384257647A5091607992 @default.
- W4384257647 hasConcept C106301342 @default.
- W4384257647 hasConcept C109718341 @default.
- W4384257647 hasConcept C121332964 @default.
- W4384257647 hasConcept C126255220 @default.
- W4384257647 hasConcept C127413603 @default.
- W4384257647 hasConcept C137635306 @default.
- W4384257647 hasConcept C137836250 @default.
- W4384257647 hasConcept C159149176 @default.
- W4384257647 hasConcept C27134321 @default.
- W4384257647 hasConcept C33923547 @default.
- W4384257647 hasConcept C41008148 @default.
- W4384257647 hasConcept C62520636 @default.
- W4384257647 hasConcept C68781425 @default.
- W4384257647 hasConcept C78519656 @default.
- W4384257647 hasConceptScore W4384257647C106301342 @default.
- W4384257647 hasConceptScore W4384257647C109718341 @default.
- W4384257647 hasConceptScore W4384257647C121332964 @default.
- W4384257647 hasConceptScore W4384257647C126255220 @default.
- W4384257647 hasConceptScore W4384257647C127413603 @default.
- W4384257647 hasConceptScore W4384257647C137635306 @default.
- W4384257647 hasConceptScore W4384257647C137836250 @default.
- W4384257647 hasConceptScore W4384257647C159149176 @default.
- W4384257647 hasConceptScore W4384257647C27134321 @default.
- W4384257647 hasConceptScore W4384257647C33923547 @default.
- W4384257647 hasConceptScore W4384257647C41008148 @default.
- W4384257647 hasConceptScore W4384257647C62520636 @default.
- W4384257647 hasConceptScore W4384257647C68781425 @default.
- W4384257647 hasConceptScore W4384257647C78519656 @default.
- W4384257647 hasLocation W43842576471 @default.
- W4384257647 hasOpenAccess W4384257647 @default.
- W4384257647 hasPrimaryLocation W43842576471 @default.
- W4384257647 hasRelatedWork W1984180799 @default.
- W4384257647 hasRelatedWork W1999564523 @default.
- W4384257647 hasRelatedWork W2029959045 @default.
- W4384257647 hasRelatedWork W2039201796 @default.
- W4384257647 hasRelatedWork W2075446857 @default.
- W4384257647 hasRelatedWork W2100916763 @default.
- W4384257647 hasRelatedWork W2129773030 @default.
- W4384257647 hasRelatedWork W2134493171 @default.
- W4384257647 hasRelatedWork W2763601085 @default.
- W4384257647 hasRelatedWork W3035117390 @default.
- W4384257647 hasVolume "292" @default.
- W4384257647 isParatext "false" @default.
- W4384257647 isRetracted "false" @default.
- W4384257647 workType "article" @default.