Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384261730> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4384261730 abstract "Traffic flow forecasting is a highly challenging task due to the dynamic spatial-temporal road conditions. Graph neural networks (GNN) has been widely applied in this task. However, most of these GNNs ignore the effects of time-varying road conditions due to the fixed range of the convolution receptive field. In this paper, we propose a novel Adaptive Graph Convolution Networks (AGC-net) to address this issue in GNN. The AGC-net is constructed by the Adaptive Graph Convolution (AGC) based on a novel context attention mechanism, which consists of a set of graph wavelets with various learnable scales. The AGC transforms the spatial graph representations into time-sensitive features considering the temporal context. Moreover, a shifted graph convolution kernel is designed to enhance the AGC, which attempts to correct the deviations caused by inaccurate topology. Experimental results on two public traffic datasets demonstrate the effectiveness of the AGC-netfootnote{Code is available at: https://github.com/zhengdaoli/AGC-net} which outperforms other baseline models significantly." @default.
- W4384261730 created "2023-07-14" @default.
- W4384261730 creator A5034767301 @default.
- W4384261730 creator A5041083903 @default.
- W4384261730 creator A5046994015 @default.
- W4384261730 date "2023-07-07" @default.
- W4384261730 modified "2023-09-24" @default.
- W4384261730 title "Adaptive Graph Convolution Networks for Traffic Flow Forecasting" @default.
- W4384261730 doi "https://doi.org/10.48550/arxiv.2307.05517" @default.
- W4384261730 hasPublicationYear "2023" @default.
- W4384261730 type Work @default.
- W4384261730 citedByCount "0" @default.
- W4384261730 crossrefType "posted-content" @default.
- W4384261730 hasAuthorship W4384261730A5034767301 @default.
- W4384261730 hasAuthorship W4384261730A5041083903 @default.
- W4384261730 hasAuthorship W4384261730A5046994015 @default.
- W4384261730 hasBestOaLocation W43842617301 @default.
- W4384261730 hasConcept C11413529 @default.
- W4384261730 hasConcept C118615104 @default.
- W4384261730 hasConcept C132525143 @default.
- W4384261730 hasConcept C154945302 @default.
- W4384261730 hasConcept C27458966 @default.
- W4384261730 hasConcept C33923547 @default.
- W4384261730 hasConcept C41008148 @default.
- W4384261730 hasConcept C45347329 @default.
- W4384261730 hasConcept C50644808 @default.
- W4384261730 hasConcept C74193536 @default.
- W4384261730 hasConcept C80444323 @default.
- W4384261730 hasConceptScore W4384261730C11413529 @default.
- W4384261730 hasConceptScore W4384261730C118615104 @default.
- W4384261730 hasConceptScore W4384261730C132525143 @default.
- W4384261730 hasConceptScore W4384261730C154945302 @default.
- W4384261730 hasConceptScore W4384261730C27458966 @default.
- W4384261730 hasConceptScore W4384261730C33923547 @default.
- W4384261730 hasConceptScore W4384261730C41008148 @default.
- W4384261730 hasConceptScore W4384261730C45347329 @default.
- W4384261730 hasConceptScore W4384261730C50644808 @default.
- W4384261730 hasConceptScore W4384261730C74193536 @default.
- W4384261730 hasConceptScore W4384261730C80444323 @default.
- W4384261730 hasLocation W43842617301 @default.
- W4384261730 hasOpenAccess W4384261730 @default.
- W4384261730 hasPrimaryLocation W43842617301 @default.
- W4384261730 hasRelatedWork W1507793640 @default.
- W4384261730 hasRelatedWork W1535188164 @default.
- W4384261730 hasRelatedWork W2036789233 @default.
- W4384261730 hasRelatedWork W2096067805 @default.
- W4384261730 hasRelatedWork W2363886702 @default.
- W4384261730 hasRelatedWork W2770721896 @default.
- W4384261730 hasRelatedWork W2965198885 @default.
- W4384261730 hasRelatedWork W4226487993 @default.
- W4384261730 hasRelatedWork W4283789226 @default.
- W4384261730 hasRelatedWork W4313525737 @default.
- W4384261730 isParatext "false" @default.
- W4384261730 isRetracted "false" @default.
- W4384261730 workType "article" @default.