Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384263422> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4384263422 abstract "We give a detailed description of the possible limits in the equivariant-Gromov-Hausdorff sense of sequences $(X_j,G_j)$, where the $X_j$'s are proper, geodesically complete, uniformly packed, CAT$(0)$-spaces and the $G_j$'s are closed, totally disconnected, unimodular, uniformly cocompact groups of isometries. We show that the class of metric quotients $G/X$, where $X$ and $G$ are as above, is compact under Gromov-Hausdorff convergence. In particular it is a geometric compactification of the class of locally geodesically complete, locally compact, locally CAT$(0)$-spaces with uniformly packed universal cover and uniformly bounded diameter." @default.
- W4384263422 created "2023-07-14" @default.
- W4384263422 creator A5054449742 @default.
- W4384263422 date "2023-07-11" @default.
- W4384263422 modified "2023-10-17" @default.
- W4384263422 title "A GH-compactification of CAT$(0)$-groups via totally disconnected, unimodular actions" @default.
- W4384263422 doi "https://doi.org/10.48550/arxiv.2307.05640" @default.
- W4384263422 hasPublicationYear "2023" @default.
- W4384263422 type Work @default.
- W4384263422 citedByCount "0" @default.
- W4384263422 crossrefType "posted-content" @default.
- W4384263422 hasAuthorship W4384263422A5054449742 @default.
- W4384263422 hasBestOaLocation W43842634221 @default.
- W4384263422 hasConcept C114614502 @default.
- W4384263422 hasConcept C134306372 @default.
- W4384263422 hasConcept C171036898 @default.
- W4384263422 hasConcept C191399826 @default.
- W4384263422 hasConcept C199422724 @default.
- W4384263422 hasConcept C201958917 @default.
- W4384263422 hasConcept C202444582 @default.
- W4384263422 hasConcept C2779165322 @default.
- W4384263422 hasConcept C31498916 @default.
- W4384263422 hasConcept C33923547 @default.
- W4384263422 hasConcept C34388435 @default.
- W4384263422 hasConcept C90377204 @default.
- W4384263422 hasConceptScore W4384263422C114614502 @default.
- W4384263422 hasConceptScore W4384263422C134306372 @default.
- W4384263422 hasConceptScore W4384263422C171036898 @default.
- W4384263422 hasConceptScore W4384263422C191399826 @default.
- W4384263422 hasConceptScore W4384263422C199422724 @default.
- W4384263422 hasConceptScore W4384263422C201958917 @default.
- W4384263422 hasConceptScore W4384263422C202444582 @default.
- W4384263422 hasConceptScore W4384263422C2779165322 @default.
- W4384263422 hasConceptScore W4384263422C31498916 @default.
- W4384263422 hasConceptScore W4384263422C33923547 @default.
- W4384263422 hasConceptScore W4384263422C34388435 @default.
- W4384263422 hasConceptScore W4384263422C90377204 @default.
- W4384263422 hasLocation W43842634221 @default.
- W4384263422 hasOpenAccess W4384263422 @default.
- W4384263422 hasPrimaryLocation W43842634221 @default.
- W4384263422 hasRelatedWork W1551575394 @default.
- W4384263422 hasRelatedWork W1564635168 @default.
- W4384263422 hasRelatedWork W1999340288 @default.
- W4384263422 hasRelatedWork W2197600311 @default.
- W4384263422 hasRelatedWork W2213795216 @default.
- W4384263422 hasRelatedWork W2586733556 @default.
- W4384263422 hasRelatedWork W2742321881 @default.
- W4384263422 hasRelatedWork W2768034190 @default.
- W4384263422 hasRelatedWork W2962950784 @default.
- W4384263422 hasRelatedWork W4287689440 @default.
- W4384263422 isParatext "false" @default.
- W4384263422 isRetracted "false" @default.
- W4384263422 workType "article" @default.