Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384263463> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4384263463 abstract "Vector autoregressions (VARs) have an associated order $p$; conditional on observations at the preceding $p$ time points, the variable at time $t$ is conditionally independent of all the earlier history. Learning the order of the model is therefore vital for its characterisation and subsequent use in forecasting. It is common to assume that a VAR is stationary. This prevents the predictive variance of the process from increasing without bound as the forecast horizon increases and facilitates interpretation of the relationships between variables. A VAR is stable if and only if the roots of its characteristic equation lie outside the unit circle, constraining the autoregressive coefficient matrices to lie in the stationary region. Unfortunately, the geometry of the stationary region is very complicated which impedes specification of a prior. In this work, the autoregressive coefficients are mapped to a set of transformed partial autocorrelation matrices which are unconstrained, allowing for straightforward prior specification, routine computational inference, and meaningful interpretation of the magnitude of the elements in the matrix. The multiplicative gamma process is used to build a prior for the unconstrained matrices, which encourages increasing shrinkage of the partial autocorrelation parameters as the lag increases. Identifying the lag beyond which the partial autocorrelations become equal to zero then determines the order of the process. Posterior inference is performed using Hamiltonian Monte Carlo via Stan. A truncation criterion is used to determine whether a partial autocorrelation matrix has been effectively shrunk to zero. The value of the truncation threshold is motivated by classical theory on the sampling distribution of the partial autocorrelation function. The work is applied to neural activity data in order to investigate ultradian rhythms in the brain." @default.
- W4384263463 created "2023-07-14" @default.
- W4384263463 creator A5010837788 @default.
- W4384263463 creator A5011926448 @default.
- W4384263463 creator A5079029491 @default.
- W4384263463 creator A5087967891 @default.
- W4384263463 creator A5092467268 @default.
- W4384263463 date "2023-07-11" @default.
- W4384263463 modified "2023-09-25" @default.
- W4384263463 title "Bayesian inference on the order of stationary vector autoregressions" @default.
- W4384263463 doi "https://doi.org/10.48550/arxiv.2307.05708" @default.
- W4384263463 hasPublicationYear "2023" @default.
- W4384263463 type Work @default.
- W4384263463 citedByCount "0" @default.
- W4384263463 crossrefType "posted-content" @default.
- W4384263463 hasAuthorship W4384263463A5010837788 @default.
- W4384263463 hasAuthorship W4384263463A5011926448 @default.
- W4384263463 hasAuthorship W4384263463A5079029491 @default.
- W4384263463 hasAuthorship W4384263463A5087967891 @default.
- W4384263463 hasAuthorship W4384263463A5092467268 @default.
- W4384263463 hasBestOaLocation W43842634631 @default.
- W4384263463 hasConcept C102519508 @default.
- W4384263463 hasConcept C105795698 @default.
- W4384263463 hasConcept C114775468 @default.
- W4384263463 hasConcept C133029050 @default.
- W4384263463 hasConcept C134306372 @default.
- W4384263463 hasConcept C151406439 @default.
- W4384263463 hasConcept C159877910 @default.
- W4384263463 hasConcept C24338571 @default.
- W4384263463 hasConcept C28826006 @default.
- W4384263463 hasConcept C33923547 @default.
- W4384263463 hasConcept C5297727 @default.
- W4384263463 hasConcept C88271906 @default.
- W4384263463 hasConceptScore W4384263463C102519508 @default.
- W4384263463 hasConceptScore W4384263463C105795698 @default.
- W4384263463 hasConceptScore W4384263463C114775468 @default.
- W4384263463 hasConceptScore W4384263463C133029050 @default.
- W4384263463 hasConceptScore W4384263463C134306372 @default.
- W4384263463 hasConceptScore W4384263463C151406439 @default.
- W4384263463 hasConceptScore W4384263463C159877910 @default.
- W4384263463 hasConceptScore W4384263463C24338571 @default.
- W4384263463 hasConceptScore W4384263463C28826006 @default.
- W4384263463 hasConceptScore W4384263463C33923547 @default.
- W4384263463 hasConceptScore W4384263463C5297727 @default.
- W4384263463 hasConceptScore W4384263463C88271906 @default.
- W4384263463 hasLocation W43842634631 @default.
- W4384263463 hasOpenAccess W4384263463 @default.
- W4384263463 hasPrimaryLocation W43842634631 @default.
- W4384263463 hasRelatedWork W1555869122 @default.
- W4384263463 hasRelatedWork W2004839075 @default.
- W4384263463 hasRelatedWork W2034428737 @default.
- W4384263463 hasRelatedWork W2040077065 @default.
- W4384263463 hasRelatedWork W2053590676 @default.
- W4384263463 hasRelatedWork W2084550234 @default.
- W4384263463 hasRelatedWork W2154231819 @default.
- W4384263463 hasRelatedWork W2738007449 @default.
- W4384263463 hasRelatedWork W3125669566 @default.
- W4384263463 hasRelatedWork W4283080704 @default.
- W4384263463 isParatext "false" @default.
- W4384263463 isRetracted "false" @default.
- W4384263463 workType "article" @default.