Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384264789> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4384264789 abstract "Transformers have significantly impacted domains like natural language processing, computer vision, and robotics, where they improve performance compared to other neural networks. This survey explores how transformers are used in reinforcement learning (RL), where they are seen as a promising solution for addressing challenges such as unstable training, credit assignment, lack of interpretability, and partial observability. We begin by providing a brief domain overview of RL, followed by a discussion on the challenges of classical RL algorithms. Next, we delve into the properties of the transformer and its variants and discuss the characteristics that make them well-suited to address the challenges inherent in RL. We examine the application of transformers to various aspects of RL, including representation learning, transition and reward function modeling, and policy optimization. We also discuss recent research that aims to enhance the interpretability and efficiency of transformers in RL, using visualization techniques and efficient training strategies. Often, the transformer architecture must be tailored to the specific needs of a given application. We present a broad overview of how transformers have been adapted for several applications, including robotics, medicine, language modeling, cloud computing, and combinatorial optimization. We conclude by discussing the limitations of using transformers in RL and assess their potential for catalyzing future breakthroughs in this field." @default.
- W4384264789 created "2023-07-14" @default.
- W4384264789 creator A5001909583 @default.
- W4384264789 creator A5007938204 @default.
- W4384264789 creator A5008383842 @default.
- W4384264789 creator A5013839045 @default.
- W4384264789 creator A5032466547 @default.
- W4384264789 date "2023-07-12" @default.
- W4384264789 modified "2023-10-16" @default.
- W4384264789 title "Transformers in Reinforcement Learning: A Survey" @default.
- W4384264789 doi "https://doi.org/10.48550/arxiv.2307.05979" @default.
- W4384264789 hasPublicationYear "2023" @default.
- W4384264789 type Work @default.
- W4384264789 citedByCount "0" @default.
- W4384264789 crossrefType "posted-content" @default.
- W4384264789 hasAuthorship W4384264789A5001909583 @default.
- W4384264789 hasAuthorship W4384264789A5007938204 @default.
- W4384264789 hasAuthorship W4384264789A5008383842 @default.
- W4384264789 hasAuthorship W4384264789A5013839045 @default.
- W4384264789 hasAuthorship W4384264789A5032466547 @default.
- W4384264789 hasBestOaLocation W43842647891 @default.
- W4384264789 hasConcept C119599485 @default.
- W4384264789 hasConcept C119857082 @default.
- W4384264789 hasConcept C123657996 @default.
- W4384264789 hasConcept C127413603 @default.
- W4384264789 hasConcept C142362112 @default.
- W4384264789 hasConcept C153349607 @default.
- W4384264789 hasConcept C154945302 @default.
- W4384264789 hasConcept C165801399 @default.
- W4384264789 hasConcept C2781067378 @default.
- W4384264789 hasConcept C34413123 @default.
- W4384264789 hasConcept C41008148 @default.
- W4384264789 hasConcept C66322947 @default.
- W4384264789 hasConcept C90509273 @default.
- W4384264789 hasConcept C97541855 @default.
- W4384264789 hasConceptScore W4384264789C119599485 @default.
- W4384264789 hasConceptScore W4384264789C119857082 @default.
- W4384264789 hasConceptScore W4384264789C123657996 @default.
- W4384264789 hasConceptScore W4384264789C127413603 @default.
- W4384264789 hasConceptScore W4384264789C142362112 @default.
- W4384264789 hasConceptScore W4384264789C153349607 @default.
- W4384264789 hasConceptScore W4384264789C154945302 @default.
- W4384264789 hasConceptScore W4384264789C165801399 @default.
- W4384264789 hasConceptScore W4384264789C2781067378 @default.
- W4384264789 hasConceptScore W4384264789C34413123 @default.
- W4384264789 hasConceptScore W4384264789C41008148 @default.
- W4384264789 hasConceptScore W4384264789C66322947 @default.
- W4384264789 hasConceptScore W4384264789C90509273 @default.
- W4384264789 hasConceptScore W4384264789C97541855 @default.
- W4384264789 hasLocation W43842647891 @default.
- W4384264789 hasOpenAccess W4384264789 @default.
- W4384264789 hasPrimaryLocation W43842647891 @default.
- W4384264789 hasRelatedWork W2605281151 @default.
- W4384264789 hasRelatedWork W2907045084 @default.
- W4384264789 hasRelatedWork W3006943036 @default.
- W4384264789 hasRelatedWork W3012234327 @default.
- W4384264789 hasRelatedWork W3119715496 @default.
- W4384264789 hasRelatedWork W3191046242 @default.
- W4384264789 hasRelatedWork W4205364923 @default.
- W4384264789 hasRelatedWork W4206534706 @default.
- W4384264789 hasRelatedWork W4229079080 @default.
- W4384264789 hasRelatedWork W4294031299 @default.
- W4384264789 isParatext "false" @default.
- W4384264789 isRetracted "false" @default.
- W4384264789 workType "article" @default.