Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384268404> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4384268404 abstract "We study the representation theory of the Lie superalgebra $mathfrak{gl}(1|1)$, constructing two spectral sequences which eventually annihilate precisely the superdimension zero indecomposable modules in the finite-dimensional category. The pages of these spectral sequences, along with their limits, define symmetric monoidal functors on $mathrm{Rep} (mathfrak{gl}(1|1))$. These two spectral sequences are related by contragredient duality, and from their limits we construct explicit semisimplification functors, which we explicitly prove are isomorphic up to a twist. We use these tools to prove branching results for the restriction of simple modules over Kac-Moody and queer Lie superalgebras to $mathfrak{gl}(1|1)$-subalgebras." @default.
- W4384268404 created "2023-07-14" @default.
- W4384268404 creator A5004558261 @default.
- W4384268404 creator A5018677850 @default.
- W4384268404 creator A5083753813 @default.
- W4384268404 date "2023-07-12" @default.
- W4384268404 modified "2023-10-17" @default.
- W4384268404 title "It takes two spectral sequences" @default.
- W4384268404 doi "https://doi.org/10.48550/arxiv.2307.06156" @default.
- W4384268404 hasPublicationYear "2023" @default.
- W4384268404 type Work @default.
- W4384268404 citedByCount "0" @default.
- W4384268404 crossrefType "posted-content" @default.
- W4384268404 hasAuthorship W4384268404A5004558261 @default.
- W4384268404 hasAuthorship W4384268404A5018677850 @default.
- W4384268404 hasAuthorship W4384268404A5083753813 @default.
- W4384268404 hasBestOaLocation W43842684041 @default.
- W4384268404 hasConcept C114614502 @default.
- W4384268404 hasConcept C123439655 @default.
- W4384268404 hasConcept C136119220 @default.
- W4384268404 hasConcept C156772000 @default.
- W4384268404 hasConcept C157480366 @default.
- W4384268404 hasConcept C197273675 @default.
- W4384268404 hasConcept C202444582 @default.
- W4384268404 hasConcept C2778023678 @default.
- W4384268404 hasConcept C33923547 @default.
- W4384268404 hasConcept C5475112 @default.
- W4384268404 hasConcept C78804095 @default.
- W4384268404 hasConcept C81999800 @default.
- W4384268404 hasConceptScore W4384268404C114614502 @default.
- W4384268404 hasConceptScore W4384268404C123439655 @default.
- W4384268404 hasConceptScore W4384268404C136119220 @default.
- W4384268404 hasConceptScore W4384268404C156772000 @default.
- W4384268404 hasConceptScore W4384268404C157480366 @default.
- W4384268404 hasConceptScore W4384268404C197273675 @default.
- W4384268404 hasConceptScore W4384268404C202444582 @default.
- W4384268404 hasConceptScore W4384268404C2778023678 @default.
- W4384268404 hasConceptScore W4384268404C33923547 @default.
- W4384268404 hasConceptScore W4384268404C5475112 @default.
- W4384268404 hasConceptScore W4384268404C78804095 @default.
- W4384268404 hasConceptScore W4384268404C81999800 @default.
- W4384268404 hasLocation W43842684041 @default.
- W4384268404 hasOpenAccess W4384268404 @default.
- W4384268404 hasPrimaryLocation W43842684041 @default.
- W4384268404 hasRelatedWork W1912064545 @default.
- W4384268404 hasRelatedWork W1982564034 @default.
- W4384268404 hasRelatedWork W2012849985 @default.
- W4384268404 hasRelatedWork W2030919045 @default.
- W4384268404 hasRelatedWork W2114188408 @default.
- W4384268404 hasRelatedWork W2114601082 @default.
- W4384268404 hasRelatedWork W2242869738 @default.
- W4384268404 hasRelatedWork W3008473888 @default.
- W4384268404 hasRelatedWork W4294789347 @default.
- W4384268404 hasRelatedWork W4361865639 @default.
- W4384268404 isParatext "false" @default.
- W4384268404 isRetracted "false" @default.
- W4384268404 workType "article" @default.