Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384268540> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4384268540 abstract "Automated bioacoustic analysis aids understanding and protection of both marine and terrestrial animals and their habitats across extensive spatiotemporal scales, and typically involves analyzing vast collections of acoustic data. With the advent of deep learning models, classification of important signals from these datasets has markedly improved. These models power critical data analyses for research and decision-making in biodiversity monitoring, animal behaviour studies, and natural resource management. However, deep learning models are often data-hungry and require a significant amount of labeled training data to perform well. While sufficient training data is available for certain taxonomic groups (e.g., common bird species), many classes (such as rare and endangered species, many non-bird taxa, and call-type), lack enough data to train a robust model from scratch. This study investigates the utility of feature embeddings extracted from large-scale audio classification models to identify bioacoustic classes other than the ones these models were originally trained on. We evaluate models on diverse datasets, including different bird calls and dialect types, bat calls, marine mammals calls, and amphibians calls. The embeddings extracted from the models trained on bird vocalization data consistently allowed higher quality classification than the embeddings trained on general audio datasets. The results of this study indicate that high-quality feature embeddings from large-scale acoustic bird classifiers can be harnessed for few-shot transfer learning, enabling the learning of new classes from a limited quantity of training data. Our findings reveal the potential for efficient analyses of novel bioacoustic tasks, even in scenarios where available training data is limited to a few samples." @default.
- W4384268540 created "2023-07-14" @default.
- W4384268540 creator A5007734172 @default.
- W4384268540 creator A5060666547 @default.
- W4384268540 creator A5071316406 @default.
- W4384268540 creator A5075427113 @default.
- W4384268540 date "2023-07-12" @default.
- W4384268540 modified "2023-10-17" @default.
- W4384268540 title "Feature Embeddings from Large-Scale Acoustic Bird Classifiers Enable Few-Shot Transfer Learning" @default.
- W4384268540 doi "https://doi.org/10.48550/arxiv.2307.06292" @default.
- W4384268540 hasPublicationYear "2023" @default.
- W4384268540 type Work @default.
- W4384268540 citedByCount "0" @default.
- W4384268540 crossrefType "posted-content" @default.
- W4384268540 hasAuthorship W4384268540A5007734172 @default.
- W4384268540 hasAuthorship W4384268540A5060666547 @default.
- W4384268540 hasAuthorship W4384268540A5071316406 @default.
- W4384268540 hasAuthorship W4384268540A5075427113 @default.
- W4384268540 hasBestOaLocation W43842685401 @default.
- W4384268540 hasConcept C119857082 @default.
- W4384268540 hasConcept C138885662 @default.
- W4384268540 hasConcept C150899416 @default.
- W4384268540 hasConcept C154945302 @default.
- W4384268540 hasConcept C197352329 @default.
- W4384268540 hasConcept C205649164 @default.
- W4384268540 hasConcept C2522767166 @default.
- W4384268540 hasConcept C2776401178 @default.
- W4384268540 hasConcept C2778755073 @default.
- W4384268540 hasConcept C34951282 @default.
- W4384268540 hasConcept C41008148 @default.
- W4384268540 hasConcept C41895202 @default.
- W4384268540 hasConcept C58640448 @default.
- W4384268540 hasConcept C59822182 @default.
- W4384268540 hasConcept C76155785 @default.
- W4384268540 hasConcept C86803240 @default.
- W4384268540 hasConceptScore W4384268540C119857082 @default.
- W4384268540 hasConceptScore W4384268540C138885662 @default.
- W4384268540 hasConceptScore W4384268540C150899416 @default.
- W4384268540 hasConceptScore W4384268540C154945302 @default.
- W4384268540 hasConceptScore W4384268540C197352329 @default.
- W4384268540 hasConceptScore W4384268540C205649164 @default.
- W4384268540 hasConceptScore W4384268540C2522767166 @default.
- W4384268540 hasConceptScore W4384268540C2776401178 @default.
- W4384268540 hasConceptScore W4384268540C2778755073 @default.
- W4384268540 hasConceptScore W4384268540C34951282 @default.
- W4384268540 hasConceptScore W4384268540C41008148 @default.
- W4384268540 hasConceptScore W4384268540C41895202 @default.
- W4384268540 hasConceptScore W4384268540C58640448 @default.
- W4384268540 hasConceptScore W4384268540C59822182 @default.
- W4384268540 hasConceptScore W4384268540C76155785 @default.
- W4384268540 hasConceptScore W4384268540C86803240 @default.
- W4384268540 hasLocation W43842685401 @default.
- W4384268540 hasOpenAccess W4384268540 @default.
- W4384268540 hasPrimaryLocation W43842685401 @default.
- W4384268540 hasRelatedWork W2960456850 @default.
- W4384268540 hasRelatedWork W3021430260 @default.
- W4384268540 hasRelatedWork W4281382123 @default.
- W4384268540 hasRelatedWork W4281645081 @default.
- W4384268540 hasRelatedWork W4308262314 @default.
- W4384268540 hasRelatedWork W4318834068 @default.
- W4384268540 hasRelatedWork W4318957922 @default.
- W4384268540 hasRelatedWork W4380611590 @default.
- W4384268540 hasRelatedWork W4382286161 @default.
- W4384268540 hasRelatedWork W4382897170 @default.
- W4384268540 isParatext "false" @default.
- W4384268540 isRetracted "false" @default.
- W4384268540 workType "article" @default.