Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384274235> ?p ?o ?g. }
- W4384274235 endingPage "106725" @default.
- W4384274235 startingPage "106725" @default.
- W4384274235 abstract "With the coming of intelligent manufacturing, multi-variety and small-batch production mode has gradually become popular. Aiming at the characteristics of high dimensional information and limited samples in this mode, a novel data-driven grey Weibull model is established for product quality prediction. Firstly, a high-dimensional information from the production process is integrated as the process variation using a data-driven method. Then, the quality prediction function is deducted by considering that process variation follows Weibull distribution-based mechanism, the Hausdorff difference scheme is adopted to weaken the error from the difference to the differential, heuristic algorithm is selected to optimize the distribution parameters of the model. Finally, an experimental analysis is designed using the dataset from some personalized customization manufacturer in China. Results show that the proposed model is not only superior to the other eight models in terms of stability and prediction accuracy, but also boasts the features of amalgamation of data-driven and mechanism-driven methods, which can simultaneously process high-dimensional information and limited samples in multi-variety and small-batch production system." @default.
- W4384274235 created "2023-07-15" @default.
- W4384274235 creator A5022604348 @default.
- W4384274235 creator A5053267313 @default.
- W4384274235 creator A5067013166 @default.
- W4384274235 creator A5078143614 @default.
- W4384274235 date "2023-10-01" @default.
- W4384274235 modified "2023-10-05" @default.
- W4384274235 title "Multi-variety and small-batch production quality forecasting by novel data-driven grey Weibull model" @default.
- W4384274235 cites W1971874702 @default.
- W4384274235 cites W1975976573 @default.
- W4384274235 cites W2014237899 @default.
- W4384274235 cites W2017014167 @default.
- W4384274235 cites W2020230662 @default.
- W4384274235 cites W2054502032 @default.
- W4384274235 cites W2063736713 @default.
- W4384274235 cites W2077364845 @default.
- W4384274235 cites W2083798655 @default.
- W4384274235 cites W2152709686 @default.
- W4384274235 cites W2159109921 @default.
- W4384274235 cites W2416270402 @default.
- W4384274235 cites W2739690896 @default.
- W4384274235 cites W2746587396 @default.
- W4384274235 cites W2765348226 @default.
- W4384274235 cites W2791854076 @default.
- W4384274235 cites W2793600172 @default.
- W4384274235 cites W2810949218 @default.
- W4384274235 cites W2887361798 @default.
- W4384274235 cites W2895083706 @default.
- W4384274235 cites W2987139620 @default.
- W4384274235 cites W3011249019 @default.
- W4384274235 cites W3021228046 @default.
- W4384274235 cites W3022128032 @default.
- W4384274235 cites W3031561042 @default.
- W4384274235 cites W3034190797 @default.
- W4384274235 cites W3034828872 @default.
- W4384274235 cites W3084394145 @default.
- W4384274235 cites W3125387313 @default.
- W4384274235 cites W3177093435 @default.
- W4384274235 cites W3192208786 @default.
- W4384274235 cites W3197032894 @default.
- W4384274235 cites W3200342592 @default.
- W4384274235 cites W3207819750 @default.
- W4384274235 cites W3216537044 @default.
- W4384274235 cites W4205966282 @default.
- W4384274235 cites W4206762286 @default.
- W4384274235 cites W4213081034 @default.
- W4384274235 cites W4224231192 @default.
- W4384274235 cites W4281394637 @default.
- W4384274235 cites W4281659074 @default.
- W4384274235 cites W4283797922 @default.
- W4384274235 cites W4308326602 @default.
- W4384274235 cites W4310582202 @default.
- W4384274235 cites W4312626346 @default.
- W4384274235 cites W4320015912 @default.
- W4384274235 cites W4320478819 @default.
- W4384274235 cites W4322766503 @default.
- W4384274235 doi "https://doi.org/10.1016/j.engappai.2023.106725" @default.
- W4384274235 hasPublicationYear "2023" @default.
- W4384274235 type Work @default.
- W4384274235 citedByCount "0" @default.
- W4384274235 crossrefType "journal-article" @default.
- W4384274235 hasAuthorship W4384274235A5022604348 @default.
- W4384274235 hasAuthorship W4384274235A5053267313 @default.
- W4384274235 hasAuthorship W4384274235A5067013166 @default.
- W4384274235 hasAuthorship W4384274235A5078143614 @default.
- W4384274235 hasConcept C105795698 @default.
- W4384274235 hasConcept C111472728 @default.
- W4384274235 hasConcept C111919701 @default.
- W4384274235 hasConcept C124101348 @default.
- W4384274235 hasConcept C136197465 @default.
- W4384274235 hasConcept C138885662 @default.
- W4384274235 hasConcept C139719470 @default.
- W4384274235 hasConcept C14036430 @default.
- W4384274235 hasConcept C154945302 @default.
- W4384274235 hasConcept C162324750 @default.
- W4384274235 hasConcept C173291955 @default.
- W4384274235 hasConcept C2778348673 @default.
- W4384274235 hasConcept C2779530757 @default.
- W4384274235 hasConcept C33923547 @default.
- W4384274235 hasConcept C41008148 @default.
- W4384274235 hasConcept C48677424 @default.
- W4384274235 hasConcept C78458016 @default.
- W4384274235 hasConcept C86803240 @default.
- W4384274235 hasConcept C98045186 @default.
- W4384274235 hasConceptScore W4384274235C105795698 @default.
- W4384274235 hasConceptScore W4384274235C111472728 @default.
- W4384274235 hasConceptScore W4384274235C111919701 @default.
- W4384274235 hasConceptScore W4384274235C124101348 @default.
- W4384274235 hasConceptScore W4384274235C136197465 @default.
- W4384274235 hasConceptScore W4384274235C138885662 @default.
- W4384274235 hasConceptScore W4384274235C139719470 @default.
- W4384274235 hasConceptScore W4384274235C14036430 @default.
- W4384274235 hasConceptScore W4384274235C154945302 @default.
- W4384274235 hasConceptScore W4384274235C162324750 @default.
- W4384274235 hasConceptScore W4384274235C173291955 @default.
- W4384274235 hasConceptScore W4384274235C2778348673 @default.
- W4384274235 hasConceptScore W4384274235C2779530757 @default.