Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384274268> ?p ?o ?g. }
- W4384274268 abstract "The proton-exchange membrane fuel cell (PEMFC) bipolar plate serpentine flow channel U-shaped region is prone to the accumulation effect, which poses serious difficulties for fuel cell water management. As a result, a deep understanding of water transport in the U-shaped region is essential to improve the fuel cell performance. Under this direction, in this work, the impact of the different microstructure parameters and initial conditions on water transport in the U-shaped region was compared with and without microstructure using the volume of the fluid method. On top of that, the velocity field distribution in the X-direction and the pressure drop distribution in the flow channel were also analyzed. From the acquired results, it was demonstrated that due to the secondary flow caused by the bending property of the microstructure, the droplet movement time in the U-shaped region was significantly shortened after the microstructure was added in the U-shaped region. The initial conditions strongly affected the droplet motion, and a larger contact angle enhanced the wall hydrophobicity to facilitate the droplet discharge. An increase in the droplet diameter led also to a rise in the windward area and shear force, which shortened droplet discharge time. Interestingly, if the waveform microstructure has too-large crests, gullies will be created that will impede the droplet motion and increase the amplitude of the droplet oscillation, resulting in excessive pressure drop in the flow channel. A too-large period led to increased droplet momentum loss, whereas a short period reduced the wall contact angle, which is not conducive to drainage. The microstructure spacing significantly affected the droplet motion, and the reduced spacing increased the airflow diffusion effect to accelerate the flow rate. The main focus of this work was led on the application of the microstructure in a U-shaped region of the serpentine flow channel, which is of great specific significance for droplet removal inside the flow channel.Practical ApplicationsProton-exchange membrane fuel cells have the advantages of high energy efficiency and low emissions. They can directly convert chemical energy into electrical energy and have broad application prospects in many fields. There is a key component in a fuel cell called a bipolar plate. On top of them, different flow channels are formed through processing, and droplet accumulation is prone to occur at the corners of these flow channels. Therefore, solving the accumulation phenomenon is an effective way to improve the performance of fuel cells. By adding a microstructure design on the wall of the flow channel to change the internal droplet transport, the function of the microstructure is to accelerate the droplet discharge from the flow channel and improve the performance of the fuel cell. Therefore, this study will introduce how the internal water transport in fuel cell flow channels is influenced by the wall microstructure." @default.
- W4384274268 created "2023-07-15" @default.
- W4384274268 creator A5030468845 @default.
- W4384274268 creator A5044711435 @default.
- W4384274268 creator A5072600496 @default.
- W4384274268 creator A5072825980 @default.
- W4384274268 creator A5083444994 @default.
- W4384274268 date "2023-10-01" @default.
- W4384274268 modified "2023-09-24" @default.
- W4384274268 title "Effects of Microstructure on Water Removal in the U-Shaped Region of PEMFC Serpentine Flow Channel" @default.
- W4384274268 cites W1979120453 @default.
- W4384274268 cites W1984654730 @default.
- W4384274268 cites W2037733696 @default.
- W4384274268 cites W2068014967 @default.
- W4384274268 cites W2142132222 @default.
- W4384274268 cites W2338683299 @default.
- W4384274268 cites W2538961250 @default.
- W4384274268 cites W2889963082 @default.
- W4384274268 cites W2937660908 @default.
- W4384274268 cites W2966613045 @default.
- W4384274268 cites W2967488229 @default.
- W4384274268 cites W2969440280 @default.
- W4384274268 cites W2974383639 @default.
- W4384274268 cites W3002520433 @default.
- W4384274268 cites W3012245137 @default.
- W4384274268 cites W3017313989 @default.
- W4384274268 cites W3031681232 @default.
- W4384274268 cites W3049172520 @default.
- W4384274268 cites W3104954115 @default.
- W4384274268 cites W3109593282 @default.
- W4384274268 cites W3154889509 @default.
- W4384274268 cites W3168196304 @default.
- W4384274268 cites W3181004470 @default.
- W4384274268 cites W3192946408 @default.
- W4384274268 cites W3208959410 @default.
- W4384274268 cites W4205486860 @default.
- W4384274268 cites W4224240048 @default.
- W4384274268 cites W4224305776 @default.
- W4384274268 cites W4293328435 @default.
- W4384274268 cites W4296371201 @default.
- W4384274268 cites W4296905624 @default.
- W4384274268 cites W4297200172 @default.
- W4384274268 cites W4307892586 @default.
- W4384274268 cites W4313216515 @default.
- W4384274268 cites W4313419707 @default.
- W4384274268 cites W4321784773 @default.
- W4384274268 doi "https://doi.org/10.1061/jleed9.eyeng-4875" @default.
- W4384274268 hasPublicationYear "2023" @default.
- W4384274268 type Work @default.
- W4384274268 citedByCount "0" @default.
- W4384274268 crossrefType "journal-article" @default.
- W4384274268 hasAuthorship W4384274268A5030468845 @default.
- W4384274268 hasAuthorship W4384274268A5044711435 @default.
- W4384274268 hasAuthorship W4384274268A5072600496 @default.
- W4384274268 hasAuthorship W4384274268A5072825980 @default.
- W4384274268 hasAuthorship W4384274268A5083444994 @default.
- W4384274268 hasConcept C114088122 @default.
- W4384274268 hasConcept C119599485 @default.
- W4384274268 hasConcept C120665830 @default.
- W4384274268 hasConcept C121332964 @default.
- W4384274268 hasConcept C127413603 @default.
- W4384274268 hasConcept C132319479 @default.
- W4384274268 hasConcept C159985019 @default.
- W4384274268 hasConcept C180205008 @default.
- W4384274268 hasConcept C185592680 @default.
- W4384274268 hasConcept C192562407 @default.
- W4384274268 hasConcept C2781345722 @default.
- W4384274268 hasConcept C38349280 @default.
- W4384274268 hasConcept C41625074 @default.
- W4384274268 hasConcept C55493867 @default.
- W4384274268 hasConcept C57879066 @default.
- W4384274268 hasConcept C87976508 @default.
- W4384274268 hasConceptScore W4384274268C114088122 @default.
- W4384274268 hasConceptScore W4384274268C119599485 @default.
- W4384274268 hasConceptScore W4384274268C120665830 @default.
- W4384274268 hasConceptScore W4384274268C121332964 @default.
- W4384274268 hasConceptScore W4384274268C127413603 @default.
- W4384274268 hasConceptScore W4384274268C132319479 @default.
- W4384274268 hasConceptScore W4384274268C159985019 @default.
- W4384274268 hasConceptScore W4384274268C180205008 @default.
- W4384274268 hasConceptScore W4384274268C185592680 @default.
- W4384274268 hasConceptScore W4384274268C192562407 @default.
- W4384274268 hasConceptScore W4384274268C2781345722 @default.
- W4384274268 hasConceptScore W4384274268C38349280 @default.
- W4384274268 hasConceptScore W4384274268C41625074 @default.
- W4384274268 hasConceptScore W4384274268C55493867 @default.
- W4384274268 hasConceptScore W4384274268C57879066 @default.
- W4384274268 hasConceptScore W4384274268C87976508 @default.
- W4384274268 hasIssue "5" @default.
- W4384274268 hasLocation W43842742681 @default.
- W4384274268 hasOpenAccess W4384274268 @default.
- W4384274268 hasPrimaryLocation W43842742681 @default.
- W4384274268 hasRelatedWork W1976464150 @default.
- W4384274268 hasRelatedWork W2030972053 @default.
- W4384274268 hasRelatedWork W2058945371 @default.
- W4384274268 hasRelatedWork W2181591546 @default.
- W4384274268 hasRelatedWork W2219615275 @default.
- W4384274268 hasRelatedWork W2351679394 @default.
- W4384274268 hasRelatedWork W2483054628 @default.
- W4384274268 hasRelatedWork W4313327107 @default.