Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384277227> ?p ?o ?g. }
- W4384277227 abstract "Objectives In this study we aimed to develop an artificial intelligence-based model for predicting postendoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP). Methods We retrospectively reviewed ERCP patients at Nagoya University Hospital (NUH) and Toyota Memorial Hospital (TMH). We constructed two prediction models, a random forest (RF), one of the machine-learning algorithms, and a logistic regression (LR) model. First, we selected features of each model from 40 possible features. Then the models were trained and validated using three fold cross-validation in the NUH cohort and tested in the TMH cohort. The area under the receiver operating characteristic curve (AUROC) was used to assess model performance. Finally, using the output parameters of the RF model, we classified the patients into low-, medium-, and high-risk groups. Results A total of 615 patients at NUH and 544 patients at TMH were enrolled. Ten features were selected for the RF model, including albumin, creatinine, biliary tract cancer, pancreatic cancer, bile duct stone, total procedure time, pancreatic duct injection, pancreatic guidewire-assisted technique without a pancreatic stent, intraductal ultrasonography, and bile duct biopsy. In the three fold cross-validation, the RF model showed better predictive ability than the LR model (AUROC 0.821 vs. 0.660). In the test, the RF model also showed better performance (AUROC 0.770 vs. 0.663, P = 0.002). Based on the RF model, we classified the patients according to the incidence of PEP (2.9%, 10.0%, and 23.9%). Conclusion We developed an RF model. Machine-learning algorithms could be powerful tools to develop accurate prediction models." @default.
- W4384277227 created "2023-07-15" @default.
- W4384277227 creator A5019564755 @default.
- W4384277227 creator A5021631309 @default.
- W4384277227 creator A5026347742 @default.
- W4384277227 creator A5032527419 @default.
- W4384277227 creator A5034693197 @default.
- W4384277227 creator A5041123163 @default.
- W4384277227 creator A5041654656 @default.
- W4384277227 creator A5043000641 @default.
- W4384277227 creator A5048289057 @default.
- W4384277227 creator A5048443511 @default.
- W4384277227 creator A5061292772 @default.
- W4384277227 creator A5067050108 @default.
- W4384277227 creator A5074762441 @default.
- W4384277227 creator A5074920808 @default.
- W4384277227 creator A5090551412 @default.
- W4384277227 date "2023-07-25" @default.
- W4384277227 modified "2023-10-18" @default.
- W4384277227 title "Artificial intelligence in a prediction model for postendoscopic retrograde cholangiopancreatography pancreatitis" @default.
- W4384277227 cites W1582733805 @default.
- W4384277227 cites W1998139225 @default.
- W4384277227 cites W2024974112 @default.
- W4384277227 cites W2057021257 @default.
- W4384277227 cites W2060013768 @default.
- W4384277227 cites W2145758369 @default.
- W4384277227 cites W2152312772 @default.
- W4384277227 cites W2153111158 @default.
- W4384277227 cites W2168046530 @default.
- W4384277227 cites W2177870565 @default.
- W4384277227 cites W2330450717 @default.
- W4384277227 cites W2411166325 @default.
- W4384277227 cites W2512631225 @default.
- W4384277227 cites W2580590664 @default.
- W4384277227 cites W2618654264 @default.
- W4384277227 cites W2788841932 @default.
- W4384277227 cites W2797069348 @default.
- W4384277227 cites W2886522935 @default.
- W4384277227 cites W2889323953 @default.
- W4384277227 cites W2893821470 @default.
- W4384277227 cites W2895954171 @default.
- W4384277227 cites W2897120700 @default.
- W4384277227 cites W2899859471 @default.
- W4384277227 cites W2911688714 @default.
- W4384277227 cites W2911964244 @default.
- W4384277227 cites W2941555836 @default.
- W4384277227 cites W2954691525 @default.
- W4384277227 cites W2964482841 @default.
- W4384277227 cites W2964637033 @default.
- W4384277227 cites W2969818771 @default.
- W4384277227 cites W2996748935 @default.
- W4384277227 cites W3014413945 @default.
- W4384277227 cites W3090442146 @default.
- W4384277227 cites W3097915748 @default.
- W4384277227 cites W3106722270 @default.
- W4384277227 cites W3182341857 @default.
- W4384277227 cites W3213479701 @default.
- W4384277227 cites W4281608336 @default.
- W4384277227 cites W4282841131 @default.
- W4384277227 cites W82338767 @default.
- W4384277227 doi "https://doi.org/10.1111/den.14622" @default.
- W4384277227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37448120" @default.
- W4384277227 hasPublicationYear "2023" @default.
- W4384277227 type Work @default.
- W4384277227 citedByCount "0" @default.
- W4384277227 crossrefType "journal-article" @default.
- W4384277227 hasAuthorship W4384277227A5019564755 @default.
- W4384277227 hasAuthorship W4384277227A5021631309 @default.
- W4384277227 hasAuthorship W4384277227A5026347742 @default.
- W4384277227 hasAuthorship W4384277227A5032527419 @default.
- W4384277227 hasAuthorship W4384277227A5034693197 @default.
- W4384277227 hasAuthorship W4384277227A5041123163 @default.
- W4384277227 hasAuthorship W4384277227A5041654656 @default.
- W4384277227 hasAuthorship W4384277227A5043000641 @default.
- W4384277227 hasAuthorship W4384277227A5048289057 @default.
- W4384277227 hasAuthorship W4384277227A5048443511 @default.
- W4384277227 hasAuthorship W4384277227A5061292772 @default.
- W4384277227 hasAuthorship W4384277227A5067050108 @default.
- W4384277227 hasAuthorship W4384277227A5074762441 @default.
- W4384277227 hasAuthorship W4384277227A5074920808 @default.
- W4384277227 hasAuthorship W4384277227A5090551412 @default.
- W4384277227 hasConcept C121608353 @default.
- W4384277227 hasConcept C126322002 @default.
- W4384277227 hasConcept C126838900 @default.
- W4384277227 hasConcept C151956035 @default.
- W4384277227 hasConcept C167135981 @default.
- W4384277227 hasConcept C2775967933 @default.
- W4384277227 hasConcept C2778444009 @default.
- W4384277227 hasConcept C2779777945 @default.
- W4384277227 hasConcept C2779960720 @default.
- W4384277227 hasConcept C2780210213 @default.
- W4384277227 hasConcept C58471807 @default.
- W4384277227 hasConcept C71924100 @default.
- W4384277227 hasConcept C72563966 @default.
- W4384277227 hasConcept C90924648 @default.
- W4384277227 hasConceptScore W4384277227C121608353 @default.
- W4384277227 hasConceptScore W4384277227C126322002 @default.
- W4384277227 hasConceptScore W4384277227C126838900 @default.
- W4384277227 hasConceptScore W4384277227C151956035 @default.
- W4384277227 hasConceptScore W4384277227C167135981 @default.