Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384277249> ?p ?o ?g. }
- W4384277249 endingPage "2313" @default.
- W4384277249 startingPage "2301" @default.
- W4384277249 abstract "Genome-scale metabolic network model (GSMM) based on enzyme constraints greatly improves general metabolic models. The turnover number ( kcat${k}_{mathrm{cat}}$ ) of enzymes is used as a parameter to limit the reaction when extending GSMM. Therefore, turnover number plays a crucial role in the prediction accuracy of cell metabolism. In this work, we proposed an enzyme-constrained GSMM parameter optimization method. First, sensitivity analysis of the parameters was carried out to select the parameters with the greatest influence on predicting the specific growth rate. Then, differential evolution (DE) algorithm with adaptive mutation strategy was adopted to optimize the parameters. This algorithm can dynamically select five different mutation strategies. Finally, the specific growth rate prediction, flux variability, and phase plane of the optimized model were analyzed to further evaluate the model. The enzyme-constrained GSMM of Saccharomyces cerevisiae, ecYeast8.3.4, was optimized. Results of the sensitivity analysis showed that the optimization variables can be divided into three groups based on sensitivity: most sensitive (149 kcat${k}_{mathrm{cat}}$ c), highly sensitive (1759 kcat${k}_{mathrm{cat}}$ ), and nonsensitive (2502 kcat${k}_{mathrm{cat}}$ ) groups. Six optimization strategies were developed based on the results of the sensitivity analysis. The results showed that the DE with adaptive mutation strategy can indeed improve the model by optimizing highly sensitive parameters. Retaining all parameters and optimizing the highly sensitive parameters are the recommended optimization strategy." @default.
- W4384277249 created "2023-07-15" @default.
- W4384277249 creator A5000809799 @default.
- W4384277249 creator A5015098029 @default.
- W4384277249 creator A5076809511 @default.
- W4384277249 date "2023-07-13" @default.
- W4384277249 modified "2023-09-25" @default.
- W4384277249 title "Sensitivity analysis and adaptive mutation strategy differential evolution algorithm for optimizing enzymes' turnover numbers in metabolic models" @default.
- W4384277249 cites W1552092570 @default.
- W4384277249 cites W1873506857 @default.
- W4384277249 cites W1978408474 @default.
- W4384277249 cites W1985090800 @default.
- W4384277249 cites W2017568388 @default.
- W4384277249 cites W2041483565 @default.
- W4384277249 cites W2047807818 @default.
- W4384277249 cites W2060958999 @default.
- W4384277249 cites W2061104439 @default.
- W4384277249 cites W2078355959 @default.
- W4384277249 cites W2126798029 @default.
- W4384277249 cites W2128959517 @default.
- W4384277249 cites W2137340504 @default.
- W4384277249 cites W2155529731 @default.
- W4384277249 cites W2162145193 @default.
- W4384277249 cites W2170298003 @default.
- W4384277249 cites W2302142688 @default.
- W4384277249 cites W2464735351 @default.
- W4384277249 cites W2523400948 @default.
- W4384277249 cites W2541638185 @default.
- W4384277249 cites W2561960911 @default.
- W4384277249 cites W2592233514 @default.
- W4384277249 cites W2734956593 @default.
- W4384277249 cites W2743063996 @default.
- W4384277249 cites W2762019694 @default.
- W4384277249 cites W2792188248 @default.
- W4384277249 cites W2884415573 @default.
- W4384277249 cites W2885651417 @default.
- W4384277249 cites W2900164475 @default.
- W4384277249 cites W2902352309 @default.
- W4384277249 cites W2903357856 @default.
- W4384277249 cites W2903658459 @default.
- W4384277249 cites W2914320604 @default.
- W4384277249 cites W2952117162 @default.
- W4384277249 cites W2965590414 @default.
- W4384277249 cites W2968647119 @default.
- W4384277249 cites W3003470753 @default.
- W4384277249 cites W3005838565 @default.
- W4384277249 cites W3007804727 @default.
- W4384277249 cites W3042162321 @default.
- W4384277249 cites W3042488732 @default.
- W4384277249 cites W3105895642 @default.
- W4384277249 cites W3118845058 @default.
- W4384277249 cites W3131459714 @default.
- W4384277249 cites W3138864424 @default.
- W4384277249 cites W3146907196 @default.
- W4384277249 cites W3151558128 @default.
- W4384277249 cites W3157211542 @default.
- W4384277249 cites W3157233679 @default.
- W4384277249 cites W3193199256 @default.
- W4384277249 cites W4213156883 @default.
- W4384277249 doi "https://doi.org/10.1002/bit.28493" @default.
- W4384277249 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37448239" @default.
- W4384277249 hasPublicationYear "2023" @default.
- W4384277249 type Work @default.
- W4384277249 citedByCount "0" @default.
- W4384277249 crossrefType "journal-article" @default.
- W4384277249 hasAuthorship W4384277249A5000809799 @default.
- W4384277249 hasAuthorship W4384277249A5015098029 @default.
- W4384277249 hasAuthorship W4384277249A5076809511 @default.
- W4384277249 hasConcept C104317684 @default.
- W4384277249 hasConcept C126255220 @default.
- W4384277249 hasConcept C127413603 @default.
- W4384277249 hasConcept C178790620 @default.
- W4384277249 hasConcept C181199279 @default.
- W4384277249 hasConcept C185592680 @default.
- W4384277249 hasConcept C186060115 @default.
- W4384277249 hasConcept C21200559 @default.
- W4384277249 hasConcept C24326235 @default.
- W4384277249 hasConcept C2777576037 @default.
- W4384277249 hasConcept C2779222958 @default.
- W4384277249 hasConcept C33923547 @default.
- W4384277249 hasConcept C41008148 @default.
- W4384277249 hasConcept C41183919 @default.
- W4384277249 hasConcept C501734568 @default.
- W4384277249 hasConcept C55493867 @default.
- W4384277249 hasConcept C56856141 @default.
- W4384277249 hasConcept C68709404 @default.
- W4384277249 hasConcept C74750220 @default.
- W4384277249 hasConcept C86803240 @default.
- W4384277249 hasConceptScore W4384277249C104317684 @default.
- W4384277249 hasConceptScore W4384277249C126255220 @default.
- W4384277249 hasConceptScore W4384277249C127413603 @default.
- W4384277249 hasConceptScore W4384277249C178790620 @default.
- W4384277249 hasConceptScore W4384277249C181199279 @default.
- W4384277249 hasConceptScore W4384277249C185592680 @default.
- W4384277249 hasConceptScore W4384277249C186060115 @default.
- W4384277249 hasConceptScore W4384277249C21200559 @default.
- W4384277249 hasConceptScore W4384277249C24326235 @default.
- W4384277249 hasConceptScore W4384277249C2777576037 @default.