Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384277493> ?p ?o ?g. }
- W4384277493 endingPage "e34285" @default.
- W4384277493 startingPage "e34285" @default.
- W4384277493 abstract "Psychological and behavioral stress has increased enormously during Coronavirus Disease 2019 (COVID-19) pandemic. However, early prediction and intervention to address psychological distress and suicidal behaviors are crucial to prevent suicide-related deaths. This study aimed to develop a machine algorithm to predict suicidal behaviors and identify essential predictors of suicidal behaviors among university students in Bangladesh during the COVID-19 pandemic. An anonymous online survey was conducted among university students in Bangladesh from June 1 to June 30, 2022. A total of 2391 university students completed and submitted the questionnaires. Five different Machine Learning models (MLMs) were applied to develop a suitable algorithm for predicting suicidal behaviors among university students. In predicting suicidal behaviors, the most crucial background and demographic features were relationship status, friendly environment in the family, family income, family type, and sex. In addition, features related to the impact of the COVID-19 pandemic were identified as job loss, economic loss, and loss of family/relatives due to COVID-19. Moreover, factors related to mental health include depression, anxiety, stress, and insomnia. The performance evaluation and comparison of the MLM showed that all models behaved consistently and were comparable in predicting suicidal risk. However, the Support Vector Machine was the best and most consistent performing model among all MLMs in terms of accuracy (79%), Kappa (0.59), receiver operating characteristic (0.89), sensitivity (0.81), and specificity (0.81). Support Vector Machine is the best-performing model for predicting suicidal risks among university students in Bangladesh and can help in designing appropriate and timely suicide prevention interventions." @default.
- W4384277493 created "2023-07-15" @default.
- W4384277493 creator A5015108193 @default.
- W4384277493 creator A5041393816 @default.
- W4384277493 creator A5051518385 @default.
- W4384277493 creator A5052909087 @default.
- W4384277493 creator A5062078079 @default.
- W4384277493 creator A5064326447 @default.
- W4384277493 creator A5076618537 @default.
- W4384277493 creator A5084290715 @default.
- W4384277493 date "2023-07-14" @default.
- W4384277493 modified "2023-10-17" @default.
- W4384277493 title "Machine learning approaches for predicting suicidal behaviors among university students in Bangladesh during the COVID-19 pandemic: A cross-sectional study" @default.
- W4384277493 cites W2008973833 @default.
- W4384277493 cites W2017540391 @default.
- W4384277493 cites W2019583087 @default.
- W4384277493 cites W2042436876 @default.
- W4384277493 cites W2059715562 @default.
- W4384277493 cites W2060415978 @default.
- W4384277493 cites W2098280317 @default.
- W4384277493 cites W2119051541 @default.
- W4384277493 cites W2121014019 @default.
- W4384277493 cites W2129506541 @default.
- W4384277493 cites W2141674457 @default.
- W4384277493 cites W2153130836 @default.
- W4384277493 cites W2269054408 @default.
- W4384277493 cites W2525927640 @default.
- W4384277493 cites W2573691615 @default.
- W4384277493 cites W2598835713 @default.
- W4384277493 cites W2622619762 @default.
- W4384277493 cites W2729540173 @default.
- W4384277493 cites W2804586924 @default.
- W4384277493 cites W2809544832 @default.
- W4384277493 cites W2897157249 @default.
- W4384277493 cites W2921445956 @default.
- W4384277493 cites W2981389356 @default.
- W4384277493 cites W2981679558 @default.
- W4384277493 cites W2982361207 @default.
- W4384277493 cites W3006659024 @default.
- W4384277493 cites W3013025191 @default.
- W4384277493 cites W3014648963 @default.
- W4384277493 cites W3014717358 @default.
- W4384277493 cites W3015259921 @default.
- W4384277493 cites W3018949043 @default.
- W4384277493 cites W3025218691 @default.
- W4384277493 cites W3044546013 @default.
- W4384277493 cites W3048710731 @default.
- W4384277493 cites W3082248258 @default.
- W4384277493 cites W3093109772 @default.
- W4384277493 cites W3093198968 @default.
- W4384277493 cites W3093378291 @default.
- W4384277493 cites W3094861555 @default.
- W4384277493 cites W3098523468 @default.
- W4384277493 cites W3104873923 @default.
- W4384277493 cites W3118747349 @default.
- W4384277493 cites W3127424185 @default.
- W4384277493 cites W3130511609 @default.
- W4384277493 cites W3139301569 @default.
- W4384277493 cites W3153905165 @default.
- W4384277493 cites W3168577973 @default.
- W4384277493 cites W3172921504 @default.
- W4384277493 cites W3175794453 @default.
- W4384277493 cites W3215747049 @default.
- W4384277493 cites W3216552952 @default.
- W4384277493 cites W4200040019 @default.
- W4384277493 cites W4205612028 @default.
- W4384277493 cites W4225294421 @default.
- W4384277493 cites W4226197519 @default.
- W4384277493 cites W4292640806 @default.
- W4384277493 cites W4297989279 @default.
- W4384277493 doi "https://doi.org/10.1097/md.0000000000034285" @default.
- W4384277493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37443501" @default.
- W4384277493 hasPublicationYear "2023" @default.
- W4384277493 type Work @default.
- W4384277493 citedByCount "0" @default.
- W4384277493 crossrefType "journal-article" @default.
- W4384277493 hasAuthorship W4384277493A5015108193 @default.
- W4384277493 hasAuthorship W4384277493A5041393816 @default.
- W4384277493 hasAuthorship W4384277493A5051518385 @default.
- W4384277493 hasAuthorship W4384277493A5052909087 @default.
- W4384277493 hasAuthorship W4384277493A5062078079 @default.
- W4384277493 hasAuthorship W4384277493A5064326447 @default.
- W4384277493 hasAuthorship W4384277493A5076618537 @default.
- W4384277493 hasAuthorship W4384277493A5084290715 @default.
- W4384277493 hasBestOaLocation W43842774931 @default.
- W4384277493 hasConcept C118552586 @default.
- W4384277493 hasConcept C134362201 @default.
- W4384277493 hasConcept C139719470 @default.
- W4384277493 hasConcept C142052008 @default.
- W4384277493 hasConcept C142724271 @default.
- W4384277493 hasConcept C162324750 @default.
- W4384277493 hasConcept C187155963 @default.
- W4384277493 hasConcept C190385971 @default.
- W4384277493 hasConcept C2776867660 @default.
- W4384277493 hasConcept C2779134260 @default.
- W4384277493 hasConcept C3008058167 @default.
- W4384277493 hasConcept C3017944768 @default.
- W4384277493 hasConcept C524204448 @default.