Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384283312> ?p ?o ?g. }
- W4384283312 endingPage "139518" @default.
- W4384283312 startingPage "139518" @default.
- W4384283312 abstract "Clean air is critical component for health and survival of human and wildlife, as atmospheric pollution is associated with a number of significant diseases including cancer. However, due to rapid industrialization and population growth, activities such as transportation, household, agricultural, and industrial processes contribute to air pollution. As a result, air pollution has become a significant problem in many cities, especially in emerging countries like India. To maintain ambient air quality, regular monitoring and forecasting of air pollution is necessary. For that purpose, machine learning has emerged as a promising technique for predicting the Air Quality Index (AQI) compared to conventional methods. Here we apply the AQI to the city of Visakhapatnam, Andhra Pradesh, India, focusing on 12 contaminants and 10 meteorological parameters from July 2017 to September 2022. For this purpose, we employed several machine learning models, including LightGBM, Random Forest, Catboost, Adaboost, and XGBoost. The results show that the Catboost model outperformed other models with an R2 correlation coefficient of 0.9998, a mean absolute error (MAE) of 0.60, a mean square error (MSE) of 0.58, and a root mean square error (RMSE) of 0.76. The Adaboost model had the least effective prediction with an R2 correlation coefficient of 0.9753. In summary, machine learning is a promising technique for predicting AQI with Catboost being the best-performing model for AQI prediction. Moreover, by leveraging historical data and machine learning algorithms enables accurate predictions of future urban air quality levels on a global scale." @default.
- W4384283312 created "2023-07-15" @default.
- W4384283312 creator A5004939766 @default.
- W4384283312 creator A5009348910 @default.
- W4384283312 creator A5014629585 @default.
- W4384283312 creator A5036844091 @default.
- W4384283312 creator A5090811204 @default.
- W4384283312 date "2023-10-01" @default.
- W4384283312 modified "2023-09-26" @default.
- W4384283312 title "Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam" @default.
- W4384283312 cites W2070625642 @default.
- W4384283312 cites W2110559264 @default.
- W4384283312 cites W2277664786 @default.
- W4384283312 cites W2331692558 @default.
- W4384283312 cites W2434774580 @default.
- W4384283312 cites W2902653484 @default.
- W4384283312 cites W2902899139 @default.
- W4384283312 cites W3007246056 @default.
- W4384283312 cites W3016689974 @default.
- W4384283312 cites W3019923827 @default.
- W4384283312 cites W3023188389 @default.
- W4384283312 cites W3032512766 @default.
- W4384283312 cites W3040876431 @default.
- W4384283312 cites W3122928643 @default.
- W4384283312 cites W3132972443 @default.
- W4384283312 cites W3133579251 @default.
- W4384283312 cites W3210240231 @default.
- W4384283312 cites W4200026345 @default.
- W4384283312 cites W4293079634 @default.
- W4384283312 cites W4293659434 @default.
- W4384283312 cites W4296004161 @default.
- W4384283312 cites W4313245230 @default.
- W4384283312 cites W612436892 @default.
- W4384283312 doi "https://doi.org/10.1016/j.chemosphere.2023.139518" @default.
- W4384283312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37454985" @default.
- W4384283312 hasPublicationYear "2023" @default.
- W4384283312 type Work @default.
- W4384283312 citedByCount "0" @default.
- W4384283312 crossrefType "journal-article" @default.
- W4384283312 hasAuthorship W4384283312A5004939766 @default.
- W4384283312 hasAuthorship W4384283312A5009348910 @default.
- W4384283312 hasAuthorship W4384283312A5014629585 @default.
- W4384283312 hasAuthorship W4384283312A5036844091 @default.
- W4384283312 hasAuthorship W4384283312A5090811204 @default.
- W4384283312 hasBestOaLocation W43842833121 @default.
- W4384283312 hasConcept C105795698 @default.
- W4384283312 hasConcept C119857082 @default.
- W4384283312 hasConcept C12267149 @default.
- W4384283312 hasConcept C126314574 @default.
- W4384283312 hasConcept C139945424 @default.
- W4384283312 hasConcept C141404830 @default.
- W4384283312 hasConcept C153294291 @default.
- W4384283312 hasConcept C154945302 @default.
- W4384283312 hasConcept C169258074 @default.
- W4384283312 hasConcept C178790620 @default.
- W4384283312 hasConcept C185592680 @default.
- W4384283312 hasConcept C205649164 @default.
- W4384283312 hasConcept C2780092901 @default.
- W4384283312 hasConcept C33923547 @default.
- W4384283312 hasConcept C39432304 @default.
- W4384283312 hasConcept C41008148 @default.
- W4384283312 hasConcept C45804977 @default.
- W4384283312 hasConcept C559116025 @default.
- W4384283312 hasConceptScore W4384283312C105795698 @default.
- W4384283312 hasConceptScore W4384283312C119857082 @default.
- W4384283312 hasConceptScore W4384283312C12267149 @default.
- W4384283312 hasConceptScore W4384283312C126314574 @default.
- W4384283312 hasConceptScore W4384283312C139945424 @default.
- W4384283312 hasConceptScore W4384283312C141404830 @default.
- W4384283312 hasConceptScore W4384283312C153294291 @default.
- W4384283312 hasConceptScore W4384283312C154945302 @default.
- W4384283312 hasConceptScore W4384283312C169258074 @default.
- W4384283312 hasConceptScore W4384283312C178790620 @default.
- W4384283312 hasConceptScore W4384283312C185592680 @default.
- W4384283312 hasConceptScore W4384283312C205649164 @default.
- W4384283312 hasConceptScore W4384283312C2780092901 @default.
- W4384283312 hasConceptScore W4384283312C33923547 @default.
- W4384283312 hasConceptScore W4384283312C39432304 @default.
- W4384283312 hasConceptScore W4384283312C41008148 @default.
- W4384283312 hasConceptScore W4384283312C45804977 @default.
- W4384283312 hasConceptScore W4384283312C559116025 @default.
- W4384283312 hasLocation W43842833121 @default.
- W4384283312 hasLocation W43842833122 @default.
- W4384283312 hasOpenAccess W4384283312 @default.
- W4384283312 hasPrimaryLocation W43842833121 @default.
- W4384283312 hasRelatedWork W1996541855 @default.
- W4384283312 hasRelatedWork W2140937121 @default.
- W4384283312 hasRelatedWork W3105737798 @default.
- W4384283312 hasRelatedWork W3195168932 @default.
- W4384283312 hasRelatedWork W3209815900 @default.
- W4384283312 hasRelatedWork W4281616679 @default.
- W4384283312 hasRelatedWork W4362680528 @default.
- W4384283312 hasRelatedWork W4375930479 @default.
- W4384283312 hasRelatedWork W4381414210 @default.
- W4384283312 hasRelatedWork W4386072274 @default.
- W4384283312 hasVolume "338" @default.
- W4384283312 isParatext "false" @default.
- W4384283312 isRetracted "false" @default.