Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384283314> ?p ?o ?g. }
- W4384283314 endingPage "15" @default.
- W4384283314 startingPage "15" @default.
- W4384283314 abstract "The lensing effect of the cosmic microwave background (CMB) is a powerful tool for our study of the distribution of matter in the universe. Currently, the quadratic estimator (EQ) method, which is widely used to reconstruct lensing potential, has been known to be sub-optimal for the low-noise levels polarization data from next-generation CMB experiments. To improve the performance of the reconstruction, other methods, such as the maximum likelihood estimator and machine learning algorithms are developed. In this work, we present a deep convolutional neural network model named the Residual Dense Local Feature U-net (RDLFUnet) for reconstructing the CMB lensing convergence field. By simulating lensed CMB data with different noise levels to train and test network models, we find that for noise levels less than $5mu$K-arcmin, RDLFUnet can recover the input gravitational potential with a higher signal-to-noise ratio than the previous deep learning and the traditional QE methods at almost the entire observation scales." @default.
- W4384283314 created "2023-07-15" @default.
- W4384283314 creator A5052604182 @default.
- W4384283314 creator A5058968346 @default.
- W4384283314 creator A5073397759 @default.
- W4384283314 creator A5078105000 @default.
- W4384283314 creator A5089601279 @default.
- W4384283314 date "2023-07-01" @default.
- W4384283314 modified "2023-09-27" @default.
- W4384283314 title "Lensing Reconstruction from the Cosmic Microwave Background Polarization with Machine Learning" @default.
- W4384283314 cites W1566749576 @default.
- W4384283314 cites W1786274528 @default.
- W4384283314 cites W1944901286 @default.
- W4384283314 cites W1966550139 @default.
- W4384283314 cites W1968470269 @default.
- W4384283314 cites W1969196502 @default.
- W4384283314 cites W1973018404 @default.
- W4384283314 cites W1980684657 @default.
- W4384283314 cites W2005024908 @default.
- W4384283314 cites W2106238303 @default.
- W4384283314 cites W2124876982 @default.
- W4384283314 cites W2133665775 @default.
- W4384283314 cites W2164261152 @default.
- W4384283314 cites W2531175724 @default.
- W4384283314 cites W2608279899 @default.
- W4384283314 cites W2750392543 @default.
- W4384283314 cites W2774320778 @default.
- W4384283314 cites W2888259247 @default.
- W4384283314 cites W2889474840 @default.
- W4384283314 cites W2916684525 @default.
- W4384283314 cites W2920534194 @default.
- W4384283314 cites W2952607039 @default.
- W4384283314 cites W2979899281 @default.
- W4384283314 cites W3004929706 @default.
- W4384283314 cites W3014284284 @default.
- W4384283314 cites W3017811505 @default.
- W4384283314 cites W3034247386 @default.
- W4384283314 cites W3085816351 @default.
- W4384283314 cites W3098202100 @default.
- W4384283314 cites W3100537878 @default.
- W4384283314 cites W3101163105 @default.
- W4384283314 cites W3103722330 @default.
- W4384283314 cites W3119692005 @default.
- W4384283314 cites W3122385173 @default.
- W4384283314 cites W3201461873 @default.
- W4384283314 cites W4223568569 @default.
- W4384283314 cites W4224286178 @default.
- W4384283314 cites W4226249609 @default.
- W4384283314 cites W4283069387 @default.
- W4384283314 cites W4288079944 @default.
- W4384283314 cites W4296816715 @default.
- W4384283314 cites W4366184236 @default.
- W4384283314 doi "https://doi.org/10.3847/1538-4357/acdb72" @default.
- W4384283314 hasPublicationYear "2023" @default.
- W4384283314 type Work @default.
- W4384283314 citedByCount "0" @default.
- W4384283314 crossrefType "journal-article" @default.
- W4384283314 hasAuthorship W4384283314A5052604182 @default.
- W4384283314 hasAuthorship W4384283314A5058968346 @default.
- W4384283314 hasAuthorship W4384283314A5073397759 @default.
- W4384283314 hasAuthorship W4384283314A5078105000 @default.
- W4384283314 hasAuthorship W4384283314A5089601279 @default.
- W4384283314 hasBestOaLocation W43842833141 @default.
- W4384283314 hasConcept C105795698 @default.
- W4384283314 hasConcept C115961682 @default.
- W4384283314 hasConcept C120665830 @default.
- W4384283314 hasConcept C121332964 @default.
- W4384283314 hasConcept C154945302 @default.
- W4384283314 hasConcept C159249277 @default.
- W4384283314 hasConcept C185429906 @default.
- W4384283314 hasConcept C190670322 @default.
- W4384283314 hasConcept C207297109 @default.
- W4384283314 hasConcept C33024259 @default.
- W4384283314 hasConcept C33923547 @default.
- W4384283314 hasConcept C41008148 @default.
- W4384283314 hasConcept C44870925 @default.
- W4384283314 hasConcept C62796785 @default.
- W4384283314 hasConcept C68498078 @default.
- W4384283314 hasConcept C81363708 @default.
- W4384283314 hasConcept C85725439 @default.
- W4384283314 hasConcept C98444146 @default.
- W4384283314 hasConcept C99498987 @default.
- W4384283314 hasConceptScore W4384283314C105795698 @default.
- W4384283314 hasConceptScore W4384283314C115961682 @default.
- W4384283314 hasConceptScore W4384283314C120665830 @default.
- W4384283314 hasConceptScore W4384283314C121332964 @default.
- W4384283314 hasConceptScore W4384283314C154945302 @default.
- W4384283314 hasConceptScore W4384283314C159249277 @default.
- W4384283314 hasConceptScore W4384283314C185429906 @default.
- W4384283314 hasConceptScore W4384283314C190670322 @default.
- W4384283314 hasConceptScore W4384283314C207297109 @default.
- W4384283314 hasConceptScore W4384283314C33024259 @default.
- W4384283314 hasConceptScore W4384283314C33923547 @default.
- W4384283314 hasConceptScore W4384283314C41008148 @default.
- W4384283314 hasConceptScore W4384283314C44870925 @default.
- W4384283314 hasConceptScore W4384283314C62796785 @default.
- W4384283314 hasConceptScore W4384283314C68498078 @default.
- W4384283314 hasConceptScore W4384283314C81363708 @default.