Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384283556> ?p ?o ?g. }
- W4384283556 endingPage "110803" @default.
- W4384283556 startingPage "110803" @default.
- W4384283556 abstract "Scale-free networks are very common in real practice. The key to analyze scale-free networks is the statistical inference of degree distribution. However, one observed network only allows us to calculate network statistics such as nodal degree, but does not provide enough information for further inference such as constructing confidence intervals. Borrowing the spirit of bootstrap, by generating network samples as bootstrap samples, we are then able to quantify statistical accuracy of various network statistics. In this paper, we propose a novel network bootstrap method named 1-BNB where bootstrap samples are generated via 1-bit matrix completion. We focus on constructing confidence interval for network degree distribution. Extensive simulation studies are conducted to demonstrate the finite sample performance of our newly propose method. A collaboration network among statisticians, a social network and an electrical grid network are studied for illustration purpose." @default.
- W4384283556 created "2023-07-15" @default.
- W4384283556 creator A5011877804 @default.
- W4384283556 creator A5030097622 @default.
- W4384283556 creator A5075192470 @default.
- W4384283556 creator A5086664284 @default.
- W4384283556 date "2023-10-01" @default.
- W4384283556 modified "2023-10-17" @default.
- W4384283556 title "A matrix completion bootstrap method for estimating scale-free network degree distribution" @default.
- W4384283556 cites W1958020823 @default.
- W4384283556 cites W1971443820 @default.
- W4384283556 cites W1973734200 @default.
- W4384283556 cites W1977969989 @default.
- W4384283556 cites W1996023858 @default.
- W4384283556 cites W2008620264 @default.
- W4384283556 cites W2067951359 @default.
- W4384283556 cites W2068902429 @default.
- W4384283556 cites W2080201763 @default.
- W4384283556 cites W2097764627 @default.
- W4384283556 cites W2103799649 @default.
- W4384283556 cites W2103972604 @default.
- W4384283556 cites W2106315062 @default.
- W4384283556 cites W2110953678 @default.
- W4384283556 cites W2112090702 @default.
- W4384283556 cites W2112976607 @default.
- W4384283556 cites W2117897510 @default.
- W4384283556 cites W2123946204 @default.
- W4384283556 cites W2124637492 @default.
- W4384283556 cites W2125315567 @default.
- W4384283556 cites W2146008005 @default.
- W4384283556 cites W2301021574 @default.
- W4384283556 cites W2571311827 @default.
- W4384283556 cites W2581491322 @default.
- W4384283556 cites W2607925007 @default.
- W4384283556 cites W2611328865 @default.
- W4384283556 cites W2735271602 @default.
- W4384283556 cites W2909143192 @default.
- W4384283556 cites W2950850272 @default.
- W4384283556 cites W2964173611 @default.
- W4384283556 cites W2964200481 @default.
- W4384283556 cites W3004666086 @default.
- W4384283556 cites W3009801530 @default.
- W4384283556 cites W3015166416 @default.
- W4384283556 cites W3048238828 @default.
- W4384283556 cites W3098811112 @default.
- W4384283556 cites W3102316600 @default.
- W4384283556 cites W3124493902 @default.
- W4384283556 cites W3129186608 @default.
- W4384283556 cites W3198963331 @default.
- W4384283556 doi "https://doi.org/10.1016/j.knosys.2023.110803" @default.
- W4384283556 hasPublicationYear "2023" @default.
- W4384283556 type Work @default.
- W4384283556 citedByCount "0" @default.
- W4384283556 crossrefType "journal-article" @default.
- W4384283556 hasAuthorship W4384283556A5011877804 @default.
- W4384283556 hasAuthorship W4384283556A5030097622 @default.
- W4384283556 hasAuthorship W4384283556A5075192470 @default.
- W4384283556 hasAuthorship W4384283556A5086664284 @default.
- W4384283556 hasConcept C105795698 @default.
- W4384283556 hasConcept C121332964 @default.
- W4384283556 hasConcept C124101348 @default.
- W4384283556 hasConcept C129848803 @default.
- W4384283556 hasConcept C134261354 @default.
- W4384283556 hasConcept C136764020 @default.
- W4384283556 hasConcept C154945302 @default.
- W4384283556 hasConcept C167723999 @default.
- W4384283556 hasConcept C185592680 @default.
- W4384283556 hasConcept C198531522 @default.
- W4384283556 hasConcept C24890656 @default.
- W4384283556 hasConcept C25580894 @default.
- W4384283556 hasConcept C2775997480 @default.
- W4384283556 hasConcept C2776214188 @default.
- W4384283556 hasConcept C2778755073 @default.
- W4384283556 hasConcept C33923547 @default.
- W4384283556 hasConcept C34947359 @default.
- W4384283556 hasConcept C41008148 @default.
- W4384283556 hasConcept C43617362 @default.
- W4384283556 hasConcept C44249647 @default.
- W4384283556 hasConcept C62520636 @default.
- W4384283556 hasConcept C87414783 @default.
- W4384283556 hasConceptScore W4384283556C105795698 @default.
- W4384283556 hasConceptScore W4384283556C121332964 @default.
- W4384283556 hasConceptScore W4384283556C124101348 @default.
- W4384283556 hasConceptScore W4384283556C129848803 @default.
- W4384283556 hasConceptScore W4384283556C134261354 @default.
- W4384283556 hasConceptScore W4384283556C136764020 @default.
- W4384283556 hasConceptScore W4384283556C154945302 @default.
- W4384283556 hasConceptScore W4384283556C167723999 @default.
- W4384283556 hasConceptScore W4384283556C185592680 @default.
- W4384283556 hasConceptScore W4384283556C198531522 @default.
- W4384283556 hasConceptScore W4384283556C24890656 @default.
- W4384283556 hasConceptScore W4384283556C25580894 @default.
- W4384283556 hasConceptScore W4384283556C2775997480 @default.
- W4384283556 hasConceptScore W4384283556C2776214188 @default.
- W4384283556 hasConceptScore W4384283556C2778755073 @default.
- W4384283556 hasConceptScore W4384283556C33923547 @default.
- W4384283556 hasConceptScore W4384283556C34947359 @default.
- W4384283556 hasConceptScore W4384283556C41008148 @default.