Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384298663> ?p ?o ?g. }
- W4384298663 abstract "Additive manufacturing (AM) is a leading technology in many fields, such as medicine and aerospace, to make prototypes and functional part fabrication. The energy requirements of the AM process are considerable and have severe consequences for environmental health and long-term viability. Research in both the private and public sectors has shifted its attention to the problem of predicting and optimizing the amount of energy that AMs use. Material state, process operation, part and process design, working environment, and other factors play a role in this problem. Existing research shows that design-relevant aspects have a significant role in AM energy consumption (EC) modeling in reality, although this topic has not received enough attention. As a result, this research starts by analyzing the design of relevant features (DRFs) from the perspective of energy modeling. Before production, these features are usually decided by a part designer (PD) and process operator (PO). An ANN-driven cluster-aware enhanced spider monkey optimization algorithm (CAESMOA) is suggested to improve the energy utility using the novel modeling methodology. Deep learning is used to strengthen the global best of CAESMOA and solve several concerns, including speeding up search times. To verify the accuracy of the suggested modeling technique, DRFs are obtained from a functioning AM system in the production line. In our research, we use a normalization strategy to filter out extraneous information. At the same time, optimization has been performed to direct PD and PO towards design and decision modifications that lessen the energy requirements of the specified AM system under investigation. The effectiveness of the suggested approach is examined, and the efficiency is also contrasted with that of other current methods. These statistics showed that our approach to energy optimization in AM delivered the most trustworthy outcomes." @default.
- W4384298663 created "2023-07-15" @default.
- W4384298663 creator A5015767931 @default.
- W4384298663 creator A5017583071 @default.
- W4384298663 creator A5029111318 @default.
- W4384298663 creator A5046958813 @default.
- W4384298663 creator A5049515073 @default.
- W4384298663 creator A5062668227 @default.
- W4384298663 creator A5069761103 @default.
- W4384298663 creator A5087248805 @default.
- W4384298663 creator A5088684847 @default.
- W4384298663 date "2023-07-14" @default.
- W4384298663 modified "2023-09-26" @default.
- W4384298663 title "Energy optimization in additive manufacturing based on cluster-aware enhanced spider monkey optimization" @default.
- W4384298663 cites W2407633629 @default.
- W4384298663 cites W2414423160 @default.
- W4384298663 cites W2611535959 @default.
- W4384298663 cites W2741574707 @default.
- W4384298663 cites W2886058099 @default.
- W4384298663 cites W2896104992 @default.
- W4384298663 cites W2899369349 @default.
- W4384298663 cites W3008290988 @default.
- W4384298663 cites W3035559453 @default.
- W4384298663 cites W3045571868 @default.
- W4384298663 cites W3094872090 @default.
- W4384298663 cites W3102092243 @default.
- W4384298663 cites W3180054616 @default.
- W4384298663 cites W3185063124 @default.
- W4384298663 cites W3186848359 @default.
- W4384298663 cites W4223963128 @default.
- W4384298663 cites W4249221130 @default.
- W4384298663 doi "https://doi.org/10.1007/s00170-023-11846-8" @default.
- W4384298663 hasPublicationYear "2023" @default.
- W4384298663 type Work @default.
- W4384298663 citedByCount "0" @default.
- W4384298663 crossrefType "journal-article" @default.
- W4384298663 hasAuthorship W4384298663A5015767931 @default.
- W4384298663 hasAuthorship W4384298663A5017583071 @default.
- W4384298663 hasAuthorship W4384298663A5029111318 @default.
- W4384298663 hasAuthorship W4384298663A5046958813 @default.
- W4384298663 hasAuthorship W4384298663A5049515073 @default.
- W4384298663 hasAuthorship W4384298663A5062668227 @default.
- W4384298663 hasAuthorship W4384298663A5069761103 @default.
- W4384298663 hasAuthorship W4384298663A5087248805 @default.
- W4384298663 hasAuthorship W4384298663A5088684847 @default.
- W4384298663 hasBestOaLocation W43842986632 @default.
- W4384298663 hasConcept C111919701 @default.
- W4384298663 hasConcept C112930515 @default.
- W4384298663 hasConcept C117671659 @default.
- W4384298663 hasConcept C119599485 @default.
- W4384298663 hasConcept C127413603 @default.
- W4384298663 hasConcept C136886441 @default.
- W4384298663 hasConcept C13736549 @default.
- W4384298663 hasConcept C139719470 @default.
- W4384298663 hasConcept C144024400 @default.
- W4384298663 hasConcept C146978453 @default.
- W4384298663 hasConcept C154945302 @default.
- W4384298663 hasConcept C162324750 @default.
- W4384298663 hasConcept C167740415 @default.
- W4384298663 hasConcept C19165224 @default.
- W4384298663 hasConcept C201995342 @default.
- W4384298663 hasConcept C2778348673 @default.
- W4384298663 hasConcept C2780165032 @default.
- W4384298663 hasConcept C41008148 @default.
- W4384298663 hasConcept C42475967 @default.
- W4384298663 hasConcept C539667460 @default.
- W4384298663 hasConcept C71924100 @default.
- W4384298663 hasConcept C98045186 @default.
- W4384298663 hasConceptScore W4384298663C111919701 @default.
- W4384298663 hasConceptScore W4384298663C112930515 @default.
- W4384298663 hasConceptScore W4384298663C117671659 @default.
- W4384298663 hasConceptScore W4384298663C119599485 @default.
- W4384298663 hasConceptScore W4384298663C127413603 @default.
- W4384298663 hasConceptScore W4384298663C136886441 @default.
- W4384298663 hasConceptScore W4384298663C13736549 @default.
- W4384298663 hasConceptScore W4384298663C139719470 @default.
- W4384298663 hasConceptScore W4384298663C144024400 @default.
- W4384298663 hasConceptScore W4384298663C146978453 @default.
- W4384298663 hasConceptScore W4384298663C154945302 @default.
- W4384298663 hasConceptScore W4384298663C162324750 @default.
- W4384298663 hasConceptScore W4384298663C167740415 @default.
- W4384298663 hasConceptScore W4384298663C19165224 @default.
- W4384298663 hasConceptScore W4384298663C201995342 @default.
- W4384298663 hasConceptScore W4384298663C2778348673 @default.
- W4384298663 hasConceptScore W4384298663C2780165032 @default.
- W4384298663 hasConceptScore W4384298663C41008148 @default.
- W4384298663 hasConceptScore W4384298663C42475967 @default.
- W4384298663 hasConceptScore W4384298663C539667460 @default.
- W4384298663 hasConceptScore W4384298663C71924100 @default.
- W4384298663 hasConceptScore W4384298663C98045186 @default.
- W4384298663 hasLocation W43842986631 @default.
- W4384298663 hasLocation W43842986632 @default.
- W4384298663 hasOpenAccess W4384298663 @default.
- W4384298663 hasPrimaryLocation W43842986631 @default.
- W4384298663 hasRelatedWork W2089970219 @default.
- W4384298663 hasRelatedWork W2184668380 @default.
- W4384298663 hasRelatedWork W2255823314 @default.
- W4384298663 hasRelatedWork W2360531289 @default.
- W4384298663 hasRelatedWork W2899084033 @default.
- W4384298663 hasRelatedWork W2937192525 @default.