Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384301529> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4384301529 endingPage "100227" @default.
- W4384301529 startingPage "100227" @default.
- W4384301529 abstract "People are increasingly getting type II diabetes mellitus (T2DM) due to unhealthy food styles, decreased outdoor activities caused by the COVID-19 pandemic, and unawareness of type II diabetes risk factors. This disease is hidden in the early stages and causes many comorbidities like fatty liver, heart disease, and peripheral artery disease. This study presents several hybrid algorithms to diagnose T2DM in its early stages without requiring expensive and time-consuming medical tests. We first apply feature selection using the Particle Swarm Optimization (PSO) algorithm to reduce the required computations. Meta-heuristics are used in developed hierarchical algorithms to optimize the hyperparameters of machine learning algorithms for classification. A comparative analysis of the algorithms with performance metrics shows Genetic Algorithm-Support Vector Machine (GA-SVM) has the largest area under the Receiver Operating Characteristic (ROC) curve (0.934) and better performance in most metrics (Accuracy of 0.934 and F1- Measure of 0.945) and reasonable metaheuristic computational time. Therefore, the GA-SVM algorithm is recommended for clinical decision support systems. This algorithm diagnoses T2DM at early stages by responding to several questions with about 93% accuracy, which can help patients to survive future complications through lifestyle intervention therapy." @default.
- W4384301529 created "2023-07-15" @default.
- W4384301529 creator A5017107640 @default.
- W4384301529 creator A5043428129 @default.
- W4384301529 creator A5047354701 @default.
- W4384301529 date "2023-12-01" @default.
- W4384301529 modified "2023-09-27" @default.
- W4384301529 title "An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection" @default.
- W4384301529 cites W2032300448 @default.
- W4384301529 cites W2083843631 @default.
- W4384301529 cites W2118414527 @default.
- W4384301529 cites W2147194759 @default.
- W4384301529 cites W2247462025 @default.
- W4384301529 cites W2478675481 @default.
- W4384301529 cites W2560103205 @default.
- W4384301529 cites W2569214105 @default.
- W4384301529 cites W2753920499 @default.
- W4384301529 cites W2766239654 @default.
- W4384301529 cites W2795101923 @default.
- W4384301529 cites W2891773516 @default.
- W4384301529 cites W2906027675 @default.
- W4384301529 cites W2947196045 @default.
- W4384301529 cites W2950722229 @default.
- W4384301529 cites W2975219453 @default.
- W4384301529 cites W2979610116 @default.
- W4384301529 cites W2997508177 @default.
- W4384301529 cites W3005215287 @default.
- W4384301529 cites W3021463136 @default.
- W4384301529 cites W3022470673 @default.
- W4384301529 cites W3083610965 @default.
- W4384301529 cites W3084116491 @default.
- W4384301529 cites W3085135947 @default.
- W4384301529 cites W3094571545 @default.
- W4384301529 cites W3130360382 @default.
- W4384301529 cites W3135225825 @default.
- W4384301529 cites W3183218270 @default.
- W4384301529 cites W3197796757 @default.
- W4384301529 cites W3198810028 @default.
- W4384301529 cites W4220755962 @default.
- W4384301529 cites W4223646140 @default.
- W4384301529 cites W4226287478 @default.
- W4384301529 cites W4308261781 @default.
- W4384301529 cites W4313070826 @default.
- W4384301529 cites W4315706275 @default.
- W4384301529 doi "https://doi.org/10.1016/j.health.2023.100227" @default.
- W4384301529 hasPublicationYear "2023" @default.
- W4384301529 type Work @default.
- W4384301529 citedByCount "0" @default.
- W4384301529 crossrefType "journal-article" @default.
- W4384301529 hasAuthorship W4384301529A5017107640 @default.
- W4384301529 hasAuthorship W4384301529A5043428129 @default.
- W4384301529 hasAuthorship W4384301529A5047354701 @default.
- W4384301529 hasBestOaLocation W43843015291 @default.
- W4384301529 hasConcept C110083411 @default.
- W4384301529 hasConcept C11413529 @default.
- W4384301529 hasConcept C119857082 @default.
- W4384301529 hasConcept C12267149 @default.
- W4384301529 hasConcept C148483581 @default.
- W4384301529 hasConcept C154945302 @default.
- W4384301529 hasConcept C41008148 @default.
- W4384301529 hasConcept C85617194 @default.
- W4384301529 hasConceptScore W4384301529C110083411 @default.
- W4384301529 hasConceptScore W4384301529C11413529 @default.
- W4384301529 hasConceptScore W4384301529C119857082 @default.
- W4384301529 hasConceptScore W4384301529C12267149 @default.
- W4384301529 hasConceptScore W4384301529C148483581 @default.
- W4384301529 hasConceptScore W4384301529C154945302 @default.
- W4384301529 hasConceptScore W4384301529C41008148 @default.
- W4384301529 hasConceptScore W4384301529C85617194 @default.
- W4384301529 hasFunder F4320311526 @default.
- W4384301529 hasLocation W43843015291 @default.
- W4384301529 hasOpenAccess W4384301529 @default.
- W4384301529 hasPrimaryLocation W43843015291 @default.
- W4384301529 hasRelatedWork W1996541855 @default.
- W4384301529 hasRelatedWork W2379653393 @default.
- W4384301529 hasRelatedWork W3034132578 @default.
- W4384301529 hasRelatedWork W3195168932 @default.
- W4384301529 hasRelatedWork W3200179079 @default.
- W4384301529 hasRelatedWork W4225307033 @default.
- W4384301529 hasRelatedWork W4288767684 @default.
- W4384301529 hasRelatedWork W4293525103 @default.
- W4384301529 hasRelatedWork W4316658362 @default.
- W4384301529 hasRelatedWork W2345184372 @default.
- W4384301529 hasVolume "4" @default.
- W4384301529 isParatext "false" @default.
- W4384301529 isRetracted "false" @default.
- W4384301529 workType "article" @default.