Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384302690> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4384302690 abstract "Coronary artery disease (CAD), is consistently ranked among the leading causes of death around the globe. Over several decades, many non-invasive approaches for predicting and detecting coronary artery disease have been proposed. Despite the extensive study that has been conducted, the death rate due to CAD continues to be at an all-time high. It is possible that predictive models constructed with machine learning (ML) algorithms can help doctors discover CAD earlier, which in turn may improve patient outcomes. This study focuses on applying several machine learning algorithms to make predictions about coronary vascular disease. We rely on the Coronary Artery Disease Data Collection for our analysis. Python and the jupyter notebook environment are used to realize this project. Many machine learning techniques are utilized in this research to predict CAD results, including a random forest, a decision tree, a gradient-boosted tree, and a logistic regression. These algorithms are compared to each other in this paper, and the gradient-boosted tree algorithm obtained more accurate results than the other existing machine-learning methods." @default.
- W4384302690 created "2023-07-15" @default.
- W4384302690 creator A5016403418 @default.
- W4384302690 creator A5078249556 @default.
- W4384302690 date "2023-05-26" @default.
- W4384302690 modified "2023-10-17" @default.
- W4384302690 title "Predictive Modeling of Cardiovascular Disease using Machine Learning Techniques" @default.
- W4384302690 cites W2148143831 @default.
- W4384302690 cites W2187399223 @default.
- W4384302690 cites W2937307539 @default.
- W4384302690 cites W2949767632 @default.
- W4384302690 cites W2950964892 @default.
- W4384302690 cites W2963565281 @default.
- W4384302690 cites W3023591976 @default.
- W4384302690 cites W3113215878 @default.
- W4384302690 cites W4200048233 @default.
- W4384302690 cites W4293087678 @default.
- W4384302690 cites W4297238324 @default.
- W4384302690 cites W4318969257 @default.
- W4384302690 cites W917774098 @default.
- W4384302690 doi "https://doi.org/10.1109/icsccc58608.2023.10176425" @default.
- W4384302690 hasPublicationYear "2023" @default.
- W4384302690 type Work @default.
- W4384302690 citedByCount "0" @default.
- W4384302690 crossrefType "proceedings-article" @default.
- W4384302690 hasAuthorship W4384302690A5016403418 @default.
- W4384302690 hasAuthorship W4384302690A5078249556 @default.
- W4384302690 hasConcept C111919701 @default.
- W4384302690 hasConcept C113174947 @default.
- W4384302690 hasConcept C119857082 @default.
- W4384302690 hasConcept C127413603 @default.
- W4384302690 hasConcept C134306372 @default.
- W4384302690 hasConcept C151956035 @default.
- W4384302690 hasConcept C154945302 @default.
- W4384302690 hasConcept C164705383 @default.
- W4384302690 hasConcept C169258074 @default.
- W4384302690 hasConcept C194789388 @default.
- W4384302690 hasConcept C199639397 @default.
- W4384302690 hasConcept C2778213512 @default.
- W4384302690 hasConcept C33923547 @default.
- W4384302690 hasConcept C41008148 @default.
- W4384302690 hasConcept C519991488 @default.
- W4384302690 hasConcept C5481197 @default.
- W4384302690 hasConcept C71924100 @default.
- W4384302690 hasConcept C84525736 @default.
- W4384302690 hasConceptScore W4384302690C111919701 @default.
- W4384302690 hasConceptScore W4384302690C113174947 @default.
- W4384302690 hasConceptScore W4384302690C119857082 @default.
- W4384302690 hasConceptScore W4384302690C127413603 @default.
- W4384302690 hasConceptScore W4384302690C134306372 @default.
- W4384302690 hasConceptScore W4384302690C151956035 @default.
- W4384302690 hasConceptScore W4384302690C154945302 @default.
- W4384302690 hasConceptScore W4384302690C164705383 @default.
- W4384302690 hasConceptScore W4384302690C169258074 @default.
- W4384302690 hasConceptScore W4384302690C194789388 @default.
- W4384302690 hasConceptScore W4384302690C199639397 @default.
- W4384302690 hasConceptScore W4384302690C2778213512 @default.
- W4384302690 hasConceptScore W4384302690C33923547 @default.
- W4384302690 hasConceptScore W4384302690C41008148 @default.
- W4384302690 hasConceptScore W4384302690C519991488 @default.
- W4384302690 hasConceptScore W4384302690C5481197 @default.
- W4384302690 hasConceptScore W4384302690C71924100 @default.
- W4384302690 hasConceptScore W4384302690C84525736 @default.
- W4384302690 hasLocation W43843026901 @default.
- W4384302690 hasOpenAccess W4384302690 @default.
- W4384302690 hasPrimaryLocation W43843026901 @default.
- W4384302690 hasRelatedWork W3043204538 @default.
- W4384302690 hasRelatedWork W3204641204 @default.
- W4384302690 hasRelatedWork W3212353841 @default.
- W4384302690 hasRelatedWork W4206422400 @default.
- W4384302690 hasRelatedWork W4212963941 @default.
- W4384302690 hasRelatedWork W4229456048 @default.
- W4384302690 hasRelatedWork W4239706975 @default.
- W4384302690 hasRelatedWork W4312949351 @default.
- W4384302690 hasRelatedWork W4321636153 @default.
- W4384302690 hasRelatedWork W4384302690 @default.
- W4384302690 isParatext "false" @default.
- W4384302690 isRetracted "false" @default.
- W4384302690 workType "article" @default.