Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384302938> ?p ?o ?g. }
- W4384302938 endingPage "45" @default.
- W4384302938 startingPage "30" @default.
- W4384302938 abstract "How to cultivate innovative talents has become an important educational issue nowadays. In China's long-term mentorship education environment, supervisor-student relationship often affects students' creativity. From the perspective of students' psychology, we explore the influence mechanism of supervisor-student relationship on creativity by machine learning and questionnaire survey. In Study 1, based on video interviews with 16 postgraduate students, we use the machine learning method to analyze the emotional states exhibited by the postgraduate students in the videos when associating them with the supervisor-student interaction scenario, finding that students have negative emotions in bad supervisor-student relationship. Subsequently, we further explore the impact of supervisor-student relationship on postgraduate students' development in supervisor-student interaction scenarios at the affective level. In Study 2, a questionnaire survey is conducted to explore the relationship between relevant variables, finding that a good supervisor-student relationship can significantly reduce power stereotype threat, decrease emotional labor surface behaviors, and promote creativity expression. The above results theoretically reveal the internal psychological processes by which supervisor-student relationship affects creativity, and have important implications for reducing emotional labor and enhancing creativity expression of postgraduate students." @default.
- W4384302938 created "2023-07-15" @default.
- W4384302938 creator A5000425983 @default.
- W4384302938 creator A5005459063 @default.
- W4384302938 creator A5074597649 @default.
- W4384302938 creator A5076451706 @default.
- W4384302938 date "2023-03-01" @default.
- W4384302938 modified "2023-09-27" @default.
- W4384302938 title "Emotional Mechanisms in Supervisor-Student Relationship: Evidence from Machine Learning and Investigation" @default.
- W4384302938 cites W1523750708 @default.
- W4384302938 cites W1822193878 @default.
- W4384302938 cites W1895103456 @default.
- W4384302938 cites W1969075369 @default.
- W4384302938 cites W1973378063 @default.
- W4384302938 cites W1983047633 @default.
- W4384302938 cites W1987154081 @default.
- W4384302938 cites W1991650794 @default.
- W4384302938 cites W1995284252 @default.
- W4384302938 cites W2004131774 @default.
- W4384302938 cites W2009184009 @default.
- W4384302938 cites W2009854402 @default.
- W4384302938 cites W2013758003 @default.
- W4384302938 cites W2018689505 @default.
- W4384302938 cites W2019243091 @default.
- W4384302938 cites W2022472850 @default.
- W4384302938 cites W2029567600 @default.
- W4384302938 cites W2037938320 @default.
- W4384302938 cites W2058394280 @default.
- W4384302938 cites W2064244272 @default.
- W4384302938 cites W2067868909 @default.
- W4384302938 cites W2075382077 @default.
- W4384302938 cites W2083620047 @default.
- W4384302938 cites W2087483781 @default.
- W4384302938 cites W2088571724 @default.
- W4384302938 cites W2088711535 @default.
- W4384302938 cites W2094480443 @default.
- W4384302938 cites W2097454301 @default.
- W4384302938 cites W2104524309 @default.
- W4384302938 cites W2110957653 @default.
- W4384302938 cites W2124758073 @default.
- W4384302938 cites W2144237451 @default.
- W4384302938 cites W2147537006 @default.
- W4384302938 cites W2150690631 @default.
- W4384302938 cites W2157506458 @default.
- W4384302938 cites W2160315424 @default.
- W4384302938 cites W2162567062 @default.
- W4384302938 cites W2166501074 @default.
- W4384302938 cites W2236770054 @default.
- W4384302938 cites W2520983689 @default.
- W4384302938 cites W2563584157 @default.
- W4384302938 cites W2622639180 @default.
- W4384302938 cites W2751881777 @default.
- W4384302938 cites W2766076014 @default.
- W4384302938 cites W2908220119 @default.
- W4384302938 cites W2933209414 @default.
- W4384302938 cites W2965859469 @default.
- W4384302938 cites W2984269085 @default.
- W4384302938 cites W2989761432 @default.
- W4384302938 cites W2999903198 @default.
- W4384302938 cites W3145529235 @default.
- W4384302938 cites W4206939405 @default.
- W4384302938 cites W4213417336 @default.
- W4384302938 cites W4233046855 @default.
- W4384302938 cites W4239372013 @default.
- W4384302938 cites W4241540074 @default.
- W4384302938 cites W4242576951 @default.
- W4384302938 cites W4246572246 @default.
- W4384302938 cites W4251062424 @default.
- W4384302938 cites W4281802278 @default.
- W4384302938 cites W4290721537 @default.
- W4384302938 cites W4293105157 @default.
- W4384302938 cites W4293370939 @default.
- W4384302938 cites W4308418046 @default.
- W4384302938 cites W2083747767 @default.
- W4384302938 cites W2161923363 @default.
- W4384302938 doi "https://doi.org/10.23919/jsc.2023.0005" @default.
- W4384302938 hasPublicationYear "2023" @default.
- W4384302938 type Work @default.
- W4384302938 citedByCount "0" @default.
- W4384302938 crossrefType "journal-article" @default.
- W4384302938 hasAuthorship W4384302938A5000425983 @default.
- W4384302938 hasAuthorship W4384302938A5005459063 @default.
- W4384302938 hasAuthorship W4384302938A5074597649 @default.
- W4384302938 hasAuthorship W4384302938A5076451706 @default.
- W4384302938 hasBestOaLocation W43843029381 @default.
- W4384302938 hasConcept C11012388 @default.
- W4384302938 hasConcept C12713177 @default.
- W4384302938 hasConcept C144024400 @default.
- W4384302938 hasConcept C154945302 @default.
- W4384302938 hasConcept C15744967 @default.
- W4384302938 hasConcept C162324750 @default.
- W4384302938 hasConcept C187736073 @default.
- W4384302938 hasConcept C2776535583 @default.
- W4384302938 hasConcept C2779110517 @default.
- W4384302938 hasConcept C36289849 @default.
- W4384302938 hasConcept C41008148 @default.
- W4384302938 hasConcept C509550671 @default.
- W4384302938 hasConcept C59364581 @default.