Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384303166> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4384303166 endingPage "225" @default.
- W4384303166 startingPage "215" @default.
- W4384303166 abstract "Time series forecasting is an essential problem involving many fields. Recently, with the development of big data technology, deep learning methods have been widely studied and achieved promising performance in time series forecasting tasks. But there is a limited number of time series or observations per time series. In this case, a time series forecasting model, which is based on domain adaptation and shared attention (DA-SA), is proposed in this study. First, we employ Transformer architecture as the basic framework of our model. Then, we specially design a selectively shared attention module to transfer valuable information from the data-rich domain to the data-poor domain by inducing domain-invariant latent features (queries and keys) and retraining domain-specific features (values). Besides, convolutional neural network is introduced to incorporate local context into the self-attention mechanism and captures the short-term dependencies of data. Finally, adversarial training is utilized to enhance the robustness of the model and improve prediction accuracy. The practicality and effectiveness of DA-SA for time series forecasting are verified on real-world datasets." @default.
- W4384303166 created "2023-07-15" @default.
- W4384303166 creator A5037083362 @default.
- W4384303166 creator A5038674178 @default.
- W4384303166 creator A5046307178 @default.
- W4384303166 creator A5061838242 @default.
- W4384303166 date "2023-01-01" @default.
- W4384303166 modified "2023-09-23" @default.
- W4384303166 title "Time Series Forecasting Model Based on Domain Adaptation and Shared Attention" @default.
- W4384303166 cites W2786808285 @default.
- W4384303166 cites W2884001105 @default.
- W4384303166 cites W2975761873 @default.
- W4384303166 cites W2980994438 @default.
- W4384303166 cites W2998172865 @default.
- W4384303166 cites W3034238904 @default.
- W4384303166 cites W3089687835 @default.
- W4384303166 cites W3093774720 @default.
- W4384303166 cites W3100057407 @default.
- W4384303166 cites W3115533775 @default.
- W4384303166 cites W3177318507 @default.
- W4384303166 cites W4295832144 @default.
- W4384303166 cites W4312737473 @default.
- W4384303166 doi "https://doi.org/10.1007/978-3-031-36822-6_19" @default.
- W4384303166 hasPublicationYear "2023" @default.
- W4384303166 type Work @default.
- W4384303166 citedByCount "0" @default.
- W4384303166 crossrefType "book-chapter" @default.
- W4384303166 hasAuthorship W4384303166A5037083362 @default.
- W4384303166 hasAuthorship W4384303166A5038674178 @default.
- W4384303166 hasAuthorship W4384303166A5046307178 @default.
- W4384303166 hasAuthorship W4384303166A5061838242 @default.
- W4384303166 hasConcept C104317684 @default.
- W4384303166 hasConcept C108583219 @default.
- W4384303166 hasConcept C119857082 @default.
- W4384303166 hasConcept C124101348 @default.
- W4384303166 hasConcept C134306372 @default.
- W4384303166 hasConcept C150899416 @default.
- W4384303166 hasConcept C151406439 @default.
- W4384303166 hasConcept C154945302 @default.
- W4384303166 hasConcept C185592680 @default.
- W4384303166 hasConcept C2776434776 @default.
- W4384303166 hasConcept C33923547 @default.
- W4384303166 hasConcept C36503486 @default.
- W4384303166 hasConcept C41008148 @default.
- W4384303166 hasConcept C55493867 @default.
- W4384303166 hasConcept C63479239 @default.
- W4384303166 hasConcept C67186912 @default.
- W4384303166 hasConcept C77088390 @default.
- W4384303166 hasConcept C81363708 @default.
- W4384303166 hasConcept C95623464 @default.
- W4384303166 hasConceptScore W4384303166C104317684 @default.
- W4384303166 hasConceptScore W4384303166C108583219 @default.
- W4384303166 hasConceptScore W4384303166C119857082 @default.
- W4384303166 hasConceptScore W4384303166C124101348 @default.
- W4384303166 hasConceptScore W4384303166C134306372 @default.
- W4384303166 hasConceptScore W4384303166C150899416 @default.
- W4384303166 hasConceptScore W4384303166C151406439 @default.
- W4384303166 hasConceptScore W4384303166C154945302 @default.
- W4384303166 hasConceptScore W4384303166C185592680 @default.
- W4384303166 hasConceptScore W4384303166C2776434776 @default.
- W4384303166 hasConceptScore W4384303166C33923547 @default.
- W4384303166 hasConceptScore W4384303166C36503486 @default.
- W4384303166 hasConceptScore W4384303166C41008148 @default.
- W4384303166 hasConceptScore W4384303166C55493867 @default.
- W4384303166 hasConceptScore W4384303166C63479239 @default.
- W4384303166 hasConceptScore W4384303166C67186912 @default.
- W4384303166 hasConceptScore W4384303166C77088390 @default.
- W4384303166 hasConceptScore W4384303166C81363708 @default.
- W4384303166 hasConceptScore W4384303166C95623464 @default.
- W4384303166 hasLocation W43843031661 @default.
- W4384303166 hasOpenAccess W4384303166 @default.
- W4384303166 hasPrimaryLocation W43843031661 @default.
- W4384303166 hasRelatedWork W2997709384 @default.
- W4384303166 hasRelatedWork W3018421652 @default.
- W4384303166 hasRelatedWork W3021430260 @default.
- W4384303166 hasRelatedWork W3091976719 @default.
- W4384303166 hasRelatedWork W3189091156 @default.
- W4384303166 hasRelatedWork W3192840557 @default.
- W4384303166 hasRelatedWork W4220996320 @default.
- W4384303166 hasRelatedWork W4362564549 @default.
- W4384303166 hasRelatedWork W4366224123 @default.
- W4384303166 hasRelatedWork W4382193078 @default.
- W4384303166 isParatext "false" @default.
- W4384303166 isRetracted "false" @default.
- W4384303166 workType "book-chapter" @default.