Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384303977> ?p ?o ?g. }
- W4384303977 endingPage "11" @default.
- W4384303977 startingPage "1" @default.
- W4384303977 abstract "Random noise suppression can greatly improve the signal-to-noise ratio (SNR) of seismic signals. To suppress random seismic noise, we propose an unsupervised deep neural network (UDNN) method based on the local cross-correlation (LCC) loss function and ensemble learning. UDNN with two base learners mainly consists of one input data, two deep neural networks (DNNs), and two output data. The proposed UDNN based on the LCC loss function and ensemble learning (UDNN-LCCEL) method takes full advantage of the nonlinear mapping capabilities of DNNs and maps noisy data into effective noise-free signals by minimizing the total loss function. The total loss function includes the LCC and mean-absolute-error (MAE) loss functions. LCC calculates the local correlation or orthogonalization between output data and the removed noise. By reducing the value of the LCC loss function, we automatically reduce the residual noise and leakage of effective signals in the output data, thus avoiding the overfitting of UDNN. UDNN-LCCEL combines the advantages of two DNNs to obtain ensemble denoised results by ensemble learning. The biggest advantage of our proposed UDNN-LCCEL method is that it does not need to use noise-free data as label data, which can well solve the problem of missing training datasets. The synthetic and field data examples are used to demonstrate that UDNN-LCCEL can achieve good random noise suppression effectiveness." @default.
- W4384303977 created "2023-07-15" @default.
- W4384303977 creator A5048075639 @default.
- W4384303977 creator A5063759133 @default.
- W4384303977 creator A5064266753 @default.
- W4384303977 creator A5069880085 @default.
- W4384303977 date "2023-01-01" @default.
- W4384303977 modified "2023-10-16" @default.
- W4384303977 title "Random Noise Attenuation Using an Unsupervised Deep Neural Network Method Based on Local Orthogonalization and Ensemble Learning" @default.
- W4384303977 cites W1901334207 @default.
- W4384303977 cites W1970840033 @default.
- W4384303977 cites W1989525662 @default.
- W4384303977 cites W1990309165 @default.
- W4384303977 cites W2015245929 @default.
- W4384303977 cites W2016572604 @default.
- W4384303977 cites W2021734622 @default.
- W4384303977 cites W2051305545 @default.
- W4384303977 cites W2073779270 @default.
- W4384303977 cites W2080041007 @default.
- W4384303977 cites W2080818349 @default.
- W4384303977 cites W2102495015 @default.
- W4384303977 cites W2141953966 @default.
- W4384303977 cites W2145167443 @default.
- W4384303977 cites W2146571341 @default.
- W4384303977 cites W2152582233 @default.
- W4384303977 cites W2168588568 @default.
- W4384303977 cites W2403089413 @default.
- W4384303977 cites W2585528949 @default.
- W4384303977 cites W2744992965 @default.
- W4384303977 cites W2800642112 @default.
- W4384303977 cites W2802862847 @default.
- W4384303977 cites W2899651173 @default.
- W4384303977 cites W2902857081 @default.
- W4384303977 cites W2904005001 @default.
- W4384303977 cites W2946430724 @default.
- W4384303977 cites W2955869164 @default.
- W4384303977 cites W2965416995 @default.
- W4384303977 cites W2967662400 @default.
- W4384303977 cites W2970602317 @default.
- W4384303977 cites W2970715218 @default.
- W4384303977 cites W3027171463 @default.
- W4384303977 cites W3033557345 @default.
- W4384303977 cites W3095036472 @default.
- W4384303977 cites W3107775527 @default.
- W4384303977 cites W3128450524 @default.
- W4384303977 cites W3135474902 @default.
- W4384303977 cites W3171208921 @default.
- W4384303977 cites W3201461236 @default.
- W4384303977 cites W3204141601 @default.
- W4384303977 cites W3213920301 @default.
- W4384303977 cites W3216588652 @default.
- W4384303977 cites W4205658213 @default.
- W4384303977 cites W4207043770 @default.
- W4384303977 cites W4214555402 @default.
- W4384303977 cites W4226149964 @default.
- W4384303977 cites W4226266787 @default.
- W4384303977 cites W4226466012 @default.
- W4384303977 cites W4304172223 @default.
- W4384303977 cites W4312282716 @default.
- W4384303977 cites W4312403916 @default.
- W4384303977 cites W4317802117 @default.
- W4384303977 cites W4319303218 @default.
- W4384303977 cites W4321484009 @default.
- W4384303977 cites W4365420606 @default.
- W4384303977 cites W4380231007 @default.
- W4384303977 doi "https://doi.org/10.1109/tgrs.2023.3295355" @default.
- W4384303977 hasPublicationYear "2023" @default.
- W4384303977 type Work @default.
- W4384303977 citedByCount "0" @default.
- W4384303977 crossrefType "journal-article" @default.
- W4384303977 hasAuthorship W4384303977A5048075639 @default.
- W4384303977 hasAuthorship W4384303977A5063759133 @default.
- W4384303977 hasAuthorship W4384303977A5064266753 @default.
- W4384303977 hasAuthorship W4384303977A5069880085 @default.
- W4384303977 hasConcept C11413529 @default.
- W4384303977 hasConcept C115961682 @default.
- W4384303977 hasConcept C153180895 @default.
- W4384303977 hasConcept C154945302 @default.
- W4384303977 hasConcept C193519340 @default.
- W4384303977 hasConcept C22019652 @default.
- W4384303977 hasConcept C31258907 @default.
- W4384303977 hasConcept C41008148 @default.
- W4384303977 hasConcept C45942800 @default.
- W4384303977 hasConcept C47559304 @default.
- W4384303977 hasConcept C50644808 @default.
- W4384303977 hasConcept C99498987 @default.
- W4384303977 hasConceptScore W4384303977C11413529 @default.
- W4384303977 hasConceptScore W4384303977C115961682 @default.
- W4384303977 hasConceptScore W4384303977C153180895 @default.
- W4384303977 hasConceptScore W4384303977C154945302 @default.
- W4384303977 hasConceptScore W4384303977C193519340 @default.
- W4384303977 hasConceptScore W4384303977C22019652 @default.
- W4384303977 hasConceptScore W4384303977C31258907 @default.
- W4384303977 hasConceptScore W4384303977C41008148 @default.
- W4384303977 hasConceptScore W4384303977C45942800 @default.
- W4384303977 hasConceptScore W4384303977C47559304 @default.
- W4384303977 hasConceptScore W4384303977C50644808 @default.
- W4384303977 hasConceptScore W4384303977C99498987 @default.