Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384304105> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4384304105 endingPage "73115" @default.
- W4384304105 startingPage "73104" @default.
- W4384304105 abstract "There is a growing concern about the high degree of non-technical losses (NTL) in developing countries especially sub-saharan Africa. Whereas several studies have employed artificial intelligence (AI) to analyze NTL, a major drawback in these studies is the focus on customer data only without considering the possible contribution of electricity distribution staff to NTL. This study introduces a novel approach to NTL reduction by analyzing a combined dataset of staff operational processes and customer consumption data. A deep-learning architecture called non-technical losses convolutional neural network (NTLCONVNET) was developed which consists of a series of three one-dimensional convolutional neural networks (1D-CNN) with different depths combined with several fully connected layers. Furthermore, limited or no research has studied the decision rationale influencing how AI models interpret the significance of features in predicting NTL. To achieve the explainability of the model, SHapley Additive exPlanations (SHAP) kernel and tree-based explainers were used for the deep and ensemble learning models respectively to determine the relative importance of the variables and how they contribute to the overall model prediction. A novel ranking framework was used to compute the holistic ranking of the variables across multiple models. The finding suggests that the staff-related variables omitted in the extant literature are significant predictors of NTL. The NTLCONVNET was compared with 5 ensemble learning algorithms and the results show that the NTLCONVNET significantly surpasses all other models, scoring 0.844, 0.838, 0.836 and 0.836 on weighted average Precision, Recall, f1 and accuracy respectively. This study, suggests a policy outcome of introducing human resource metrics into NTL reduction strategies." @default.
- W4384304105 created "2023-07-15" @default.
- W4384304105 creator A5013983450 @default.
- W4384304105 creator A5014716134 @default.
- W4384304105 creator A5022403371 @default.
- W4384304105 creator A5036347720 @default.
- W4384304105 creator A5056515477 @default.
- W4384304105 date "2023-01-01" @default.
- W4384304105 modified "2023-09-26" @default.
- W4384304105 title "Explainable Artificial Intelligence for Prediction of Non-Technical Losses in Electricity Distribution Networks" @default.
- W4384304105 cites W1534477342 @default.
- W4384304105 cites W1536680647 @default.
- W4384304105 cites W2097117768 @default.
- W4384304105 cites W2142827986 @default.
- W4384304105 cites W2302255633 @default.
- W4384304105 cites W2582953896 @default.
- W4384304105 cites W2831439818 @default.
- W4384304105 cites W2895596034 @default.
- W4384304105 cites W2910992412 @default.
- W4384304105 cites W2911964244 @default.
- W4384304105 cites W2978986055 @default.
- W4384304105 cites W2981785763 @default.
- W4384304105 cites W2998161714 @default.
- W4384304105 cites W3016170140 @default.
- W4384304105 cites W3022246579 @default.
- W4384304105 cites W3033877814 @default.
- W4384304105 cites W3034856730 @default.
- W4384304105 cites W3102476541 @default.
- W4384304105 cites W3110922131 @default.
- W4384304105 cites W3125540236 @default.
- W4384304105 cites W3127541695 @default.
- W4384304105 cites W3133787601 @default.
- W4384304105 cites W3172598200 @default.
- W4384304105 cites W3176279528 @default.
- W4384304105 cites W3177389711 @default.
- W4384304105 cites W3185631424 @default.
- W4384304105 cites W3192089976 @default.
- W4384304105 cites W3203629218 @default.
- W4384304105 cites W3213550270 @default.
- W4384304105 cites W4249972823 @default.
- W4384304105 cites W4281884786 @default.
- W4384304105 doi "https://doi.org/10.1109/access.2023.3295688" @default.
- W4384304105 hasPublicationYear "2023" @default.
- W4384304105 type Work @default.
- W4384304105 citedByCount "0" @default.
- W4384304105 crossrefType "journal-article" @default.
- W4384304105 hasAuthorship W4384304105A5013983450 @default.
- W4384304105 hasAuthorship W4384304105A5014716134 @default.
- W4384304105 hasAuthorship W4384304105A5022403371 @default.
- W4384304105 hasAuthorship W4384304105A5036347720 @default.
- W4384304105 hasAuthorship W4384304105A5056515477 @default.
- W4384304105 hasBestOaLocation W43843041051 @default.
- W4384304105 hasConcept C108583219 @default.
- W4384304105 hasConcept C114614502 @default.
- W4384304105 hasConcept C119857082 @default.
- W4384304105 hasConcept C154945302 @default.
- W4384304105 hasConcept C189430467 @default.
- W4384304105 hasConcept C33923547 @default.
- W4384304105 hasConcept C41008148 @default.
- W4384304105 hasConcept C45942800 @default.
- W4384304105 hasConcept C50644808 @default.
- W4384304105 hasConcept C74193536 @default.
- W4384304105 hasConcept C81363708 @default.
- W4384304105 hasConceptScore W4384304105C108583219 @default.
- W4384304105 hasConceptScore W4384304105C114614502 @default.
- W4384304105 hasConceptScore W4384304105C119857082 @default.
- W4384304105 hasConceptScore W4384304105C154945302 @default.
- W4384304105 hasConceptScore W4384304105C189430467 @default.
- W4384304105 hasConceptScore W4384304105C33923547 @default.
- W4384304105 hasConceptScore W4384304105C41008148 @default.
- W4384304105 hasConceptScore W4384304105C45942800 @default.
- W4384304105 hasConceptScore W4384304105C50644808 @default.
- W4384304105 hasConceptScore W4384304105C74193536 @default.
- W4384304105 hasConceptScore W4384304105C81363708 @default.
- W4384304105 hasLocation W43843041051 @default.
- W4384304105 hasLocation W43843041052 @default.
- W4384304105 hasOpenAccess W4384304105 @default.
- W4384304105 hasPrimaryLocation W43843041051 @default.
- W4384304105 hasRelatedWork W2731899572 @default.
- W4384304105 hasRelatedWork W2810053714 @default.
- W4384304105 hasRelatedWork W2999805992 @default.
- W4384304105 hasRelatedWork W3116150086 @default.
- W4384304105 hasRelatedWork W3133861977 @default.
- W4384304105 hasRelatedWork W3136979370 @default.
- W4384304105 hasRelatedWork W4200173597 @default.
- W4384304105 hasRelatedWork W4312417841 @default.
- W4384304105 hasRelatedWork W4321369474 @default.
- W4384304105 hasRelatedWork W4380075502 @default.
- W4384304105 hasVolume "11" @default.
- W4384304105 isParatext "false" @default.
- W4384304105 isRetracted "false" @default.
- W4384304105 workType "article" @default.