Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384304424> ?p ?o ?g. }
- W4384304424 endingPage "450" @default.
- W4384304424 startingPage "426" @default.
- W4384304424 abstract "Massive data generated by connected smart devices, particularly in distributed computer networks, contributed to the large network traffic burden caused by the ever-increasing use of the Internet infrastructure and web caching systems. Such connected smart devices generate massive data, shared and synchronized together in real-time over the connected nodes using various emerging technologies through the Web. However, the performance of classical web caching methods usually degrades when caching web objects due to various factors. Therefore, this study presents a comprehensive review of machine learning and deep learning-based web cache replacement models that could be effectively used to improve the performance of web caching systems. The study revealed that random forest, artificial neural networks, support vector machine, LSTM and fuzzy approaches are among web cache replacement models that have been used to improve the performance of web caching systems. However, due to the sparse use of web object features, some models are typically unable to handle today’s unpredictable web caching demands. Therefore, to deal with rising web usage, high latency, increased user-perceived delays, web cache overload, network traffic congestion, increased web object size, real-time data sharing, and limited bandwidth size, various web object attributes should be included in the next-generation adaptive and robust machine and deep learning-based web cache replacement models. In addition to web object features such as recency, frequency, cost, hit rate, modification and expiration time, more features are required in developing adaptive web caching algorithms to improve the performance of web caching systems." @default.
- W4384304424 created "2023-07-15" @default.
- W4384304424 creator A5014775353 @default.
- W4384304424 creator A5037160462 @default.
- W4384304424 creator A5056671289 @default.
- W4384304424 creator A5060442790 @default.
- W4384304424 creator A5077512113 @default.
- W4384304424 creator A5078990921 @default.
- W4384304424 creator A5084032885 @default.
- W4384304424 creator A5090546627 @default.
- W4384304424 date "2023-01-01" @default.
- W4384304424 modified "2023-09-24" @default.
- W4384304424 title "The Future of Next Generation Web: Juxtaposing Machine Learning and Deep Learning-Based Web Cache Replacement Models in Web Caching Systems" @default.
- W4384304424 cites W1480158698 @default.
- W4384304424 cites W1530243711 @default.
- W4384304424 cites W1763255008 @default.
- W4384304424 cites W1968767517 @default.
- W4384304424 cites W1972284826 @default.
- W4384304424 cites W1978690967 @default.
- W4384304424 cites W1991607248 @default.
- W4384304424 cites W1999518865 @default.
- W4384304424 cites W2001414591 @default.
- W4384304424 cites W2006062966 @default.
- W4384304424 cites W2006637266 @default.
- W4384304424 cites W2010020348 @default.
- W4384304424 cites W2013743559 @default.
- W4384304424 cites W2016574615 @default.
- W4384304424 cites W2021767638 @default.
- W4384304424 cites W2035656160 @default.
- W4384304424 cites W2040402865 @default.
- W4384304424 cites W2040489320 @default.
- W4384304424 cites W2050757208 @default.
- W4384304424 cites W2070210459 @default.
- W4384304424 cites W2083637157 @default.
- W4384304424 cites W2094166085 @default.
- W4384304424 cites W2105103777 @default.
- W4384304424 cites W2111619626 @default.
- W4384304424 cites W2122168296 @default.
- W4384304424 cites W2136057111 @default.
- W4384304424 cites W2138350977 @default.
- W4384304424 cites W2158273074 @default.
- W4384304424 cites W2163598150 @default.
- W4384304424 cites W2173463751 @default.
- W4384304424 cites W2327345026 @default.
- W4384304424 cites W2474321450 @default.
- W4384304424 cites W2503500411 @default.
- W4384304424 cites W2569602356 @default.
- W4384304424 cites W2591802631 @default.
- W4384304424 cites W2595785933 @default.
- W4384304424 cites W2598976192 @default.
- W4384304424 cites W2606073172 @default.
- W4384304424 cites W2732476462 @default.
- W4384304424 cites W2735067048 @default.
- W4384304424 cites W2790512830 @default.
- W4384304424 cites W2797124159 @default.
- W4384304424 cites W2800978379 @default.
- W4384304424 cites W2803187708 @default.
- W4384304424 cites W2804397220 @default.
- W4384304424 cites W2885924275 @default.
- W4384304424 cites W2888869505 @default.
- W4384304424 cites W2891226723 @default.
- W4384304424 cites W2898809225 @default.
- W4384304424 cites W2900441340 @default.
- W4384304424 cites W2902389600 @default.
- W4384304424 cites W2902704047 @default.
- W4384304424 cites W2906550289 @default.
- W4384304424 cites W2909247140 @default.
- W4384304424 cites W2910082864 @default.
- W4384304424 cites W2911176937 @default.
- W4384304424 cites W2912605186 @default.
- W4384304424 cites W2916086317 @default.
- W4384304424 cites W2919798606 @default.
- W4384304424 cites W2932787182 @default.
- W4384304424 cites W2943473267 @default.
- W4384304424 cites W2943543316 @default.
- W4384304424 cites W2944899242 @default.
- W4384304424 cites W2946043566 @default.
- W4384304424 cites W2952290770 @default.
- W4384304424 cites W2964427520 @default.
- W4384304424 cites W2969284553 @default.
- W4384304424 cites W2971448198 @default.
- W4384304424 cites W2994654641 @default.
- W4384304424 cites W3043904603 @default.
- W4384304424 cites W3082112151 @default.
- W4384304424 cites W3090449755 @default.
- W4384304424 cites W3123585915 @default.
- W4384304424 cites W3141368500 @default.
- W4384304424 cites W3169296706 @default.
- W4384304424 cites W3212405422 @default.
- W4384304424 cites W4210650061 @default.
- W4384304424 cites W4285819427 @default.
- W4384304424 cites W4294215472 @default.
- W4384304424 cites W4311655071 @default.
- W4384304424 cites W4312848500 @default.
- W4384304424 cites W4320179452 @default.
- W4384304424 cites W4362496745 @default.
- W4384304424 cites W4362496760 @default.
- W4384304424 doi "https://doi.org/10.1007/978-3-031-35317-8_39" @default.