Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384305971> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4384305971 endingPage "106736" @default.
- W4384305971 startingPage "106736" @default.
- W4384305971 abstract "Cut-Test technique employs visual inspection of interior coloration, compartmentalization, and defects of beans for effective classification of cocoa beans. However, due to its subjective nature and natural variations in visual perception, it is intrinsically limited, resulting in disparities in verdicts, imprecision, discordance, and time-consuming and labor-intensive classification procedures. Machine Learning (ML) techniques have been proposed to address these challenges with significant results, but there is still a need for improvement. In this paper, we propose a color and texture extraction technique for image representation, as well as a generalized, less complex Neural Network model, to help improve the performance of machine classification of Cut-Test cocoa beans. A total of 1400 beans were classified into 14 grades. Experimental results on the equal cocoa cut-test dataset, which is the standard publicly available cut-test dataset, show that the novel extraction method combined with the developed Artificial Neural Networks provides a more homogeneous classification rate for all grades, obtaining 85.36%, 85%, 83%, and 83% for accuracy, precision, recall, and F1 measure, respectively. The proposed model outperforms other ML models, such as Support Vector Machines, Decision Trees, Random Forests, and Naïve Bayes, on the same dataset. Additionally, the proposed ANN model demonstrates relatively better generalization when compared with earlier work by Santos on the same dataset. The proposed techniques in this work are robust on the cut-test dataset and can serve as an accurate Computer-Aided Diagnostic tool for cocoa bean classification." @default.
- W4384305971 created "2023-07-15" @default.
- W4384305971 creator A5007815734 @default.
- W4384305971 creator A5050371657 @default.
- W4384305971 creator A5056094839 @default.
- W4384305971 creator A5089844476 @default.
- W4384305971 creator A5092471203 @default.
- W4384305971 date "2023-10-01" @default.
- W4384305971 modified "2023-09-27" @default.
- W4384305971 title "Cocoa beans classification using enhanced image feature extraction techniques and a regularized Artificial Neural Network model" @default.
- W4384305971 cites W1878565453 @default.
- W4384305971 cites W2010560725 @default.
- W4384305971 cites W2014640268 @default.
- W4384305971 cites W2059665632 @default.
- W4384305971 cites W2148143831 @default.
- W4384305971 cites W2285803459 @default.
- W4384305971 cites W2474776837 @default.
- W4384305971 cites W2494089982 @default.
- W4384305971 cites W2623223689 @default.
- W4384305971 cites W2790979755 @default.
- W4384305971 cites W2946864864 @default.
- W4384305971 cites W2953618630 @default.
- W4384305971 cites W2971479067 @default.
- W4384305971 cites W2980431428 @default.
- W4384305971 cites W2987755382 @default.
- W4384305971 cites W3079760979 @default.
- W4384305971 cites W3093767281 @default.
- W4384305971 cites W3112383915 @default.
- W4384305971 cites W3189060660 @default.
- W4384305971 cites W3200057600 @default.
- W4384305971 cites W4206321988 @default.
- W4384305971 cites W4289519668 @default.
- W4384305971 doi "https://doi.org/10.1016/j.engappai.2023.106736" @default.
- W4384305971 hasPublicationYear "2023" @default.
- W4384305971 type Work @default.
- W4384305971 citedByCount "0" @default.
- W4384305971 crossrefType "journal-article" @default.
- W4384305971 hasAuthorship W4384305971A5007815734 @default.
- W4384305971 hasAuthorship W4384305971A5050371657 @default.
- W4384305971 hasAuthorship W4384305971A5056094839 @default.
- W4384305971 hasAuthorship W4384305971A5089844476 @default.
- W4384305971 hasAuthorship W4384305971A5092471203 @default.
- W4384305971 hasConcept C115961682 @default.
- W4384305971 hasConcept C119857082 @default.
- W4384305971 hasConcept C12267149 @default.
- W4384305971 hasConcept C153180895 @default.
- W4384305971 hasConcept C154945302 @default.
- W4384305971 hasConcept C41008148 @default.
- W4384305971 hasConcept C50644808 @default.
- W4384305971 hasConcept C52001869 @default.
- W4384305971 hasConcept C52622490 @default.
- W4384305971 hasConcept C75294576 @default.
- W4384305971 hasConcept C84525736 @default.
- W4384305971 hasConceptScore W4384305971C115961682 @default.
- W4384305971 hasConceptScore W4384305971C119857082 @default.
- W4384305971 hasConceptScore W4384305971C12267149 @default.
- W4384305971 hasConceptScore W4384305971C153180895 @default.
- W4384305971 hasConceptScore W4384305971C154945302 @default.
- W4384305971 hasConceptScore W4384305971C41008148 @default.
- W4384305971 hasConceptScore W4384305971C50644808 @default.
- W4384305971 hasConceptScore W4384305971C52001869 @default.
- W4384305971 hasConceptScore W4384305971C52622490 @default.
- W4384305971 hasConceptScore W4384305971C75294576 @default.
- W4384305971 hasConceptScore W4384305971C84525736 @default.
- W4384305971 hasLocation W43843059711 @default.
- W4384305971 hasOpenAccess W4384305971 @default.
- W4384305971 hasPrimaryLocation W43843059711 @default.
- W4384305971 hasRelatedWork W1470425429 @default.
- W4384305971 hasRelatedWork W2336974148 @default.
- W4384305971 hasRelatedWork W3022791929 @default.
- W4384305971 hasRelatedWork W3186233728 @default.
- W4384305971 hasRelatedWork W4291177832 @default.
- W4384305971 hasRelatedWork W4377964522 @default.
- W4384305971 hasRelatedWork W4384345534 @default.
- W4384305971 hasRelatedWork W4385810203 @default.
- W4384305971 hasRelatedWork W4386263996 @default.
- W4384305971 hasRelatedWork W2345184372 @default.
- W4384305971 hasVolume "125" @default.
- W4384305971 isParatext "false" @default.
- W4384305971 isRetracted "false" @default.
- W4384305971 workType "article" @default.