Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384306306> ?p ?o ?g. }
- W4384306306 endingPage "104850" @default.
- W4384306306 startingPage "104850" @default.
- W4384306306 abstract "Advances on the construction front continue to rise as the next industrial revolution (Construction 4.0) nears. One promising front revolves around additively fabricated or simply 3D printed concrete. The growing number of ongoing parallel research programs has now made it possible to collect a large amount of data on such concrete as, up to this point, the open literature lacks a comprehensive database. Thus, this paper presents the largest database spanning over 300 experiments on 3D printed concrete. This database is then examined via multilinear regression as well as two explainable artificial intelligence (XAI) algorithms, namely, Random Forest and XGBoost, to arrive at a working model capable of predicting the compressive strength property for 3D concrete mixtures that incorporate the following seven features: age of specimens, as well as the magnitude of cement, water, fly ash, silica fume, fine aggregate, and superplasticizer. Findings from this work infer the superiority of XAI models in predicting the strength property of 3D printed concrete. Our analysis identifies two features, namely, the age of specimens and the quantity of fine aggregate, as the most important features that can accurately predict the compressive strength property. Finally, the deployed explainability methods successfully quantified the highly nonlinear relations between the selected features and compressive strength, and this newly acquired knowledge can help tailor functional concrete mixtures." @default.
- W4384306306 created "2023-07-15" @default.
- W4384306306 creator A5047632598 @default.
- W4384306306 creator A5078040373 @default.
- W4384306306 date "2023-10-01" @default.
- W4384306306 modified "2023-09-29" @default.
- W4384306306 title "Tailoring 3D printed concrete through explainable artificial intelligence" @default.
- W4384306306 cites W1568560596 @default.
- W4384306306 cites W1985373218 @default.
- W4384306306 cites W1987244260 @default.
- W4384306306 cites W1996031526 @default.
- W4384306306 cites W2004566673 @default.
- W4384306306 cites W2030488271 @default.
- W4384306306 cites W2032962877 @default.
- W4384306306 cites W2034205085 @default.
- W4384306306 cites W2036935895 @default.
- W4384306306 cites W2038808304 @default.
- W4384306306 cites W2047273065 @default.
- W4384306306 cites W2061933243 @default.
- W4384306306 cites W2085281262 @default.
- W4384306306 cites W2087859563 @default.
- W4384306306 cites W2093311332 @default.
- W4384306306 cites W2093929910 @default.
- W4384306306 cites W2138664833 @default.
- W4384306306 cites W2503299386 @default.
- W4384306306 cites W2579122073 @default.
- W4384306306 cites W2592758507 @default.
- W4384306306 cites W2594967417 @default.
- W4384306306 cites W2606387782 @default.
- W4384306306 cites W2619220912 @default.
- W4384306306 cites W2621019941 @default.
- W4384306306 cites W2737706773 @default.
- W4384306306 cites W2741421471 @default.
- W4384306306 cites W2753170214 @default.
- W4384306306 cites W2757119208 @default.
- W4384306306 cites W2769217008 @default.
- W4384306306 cites W2775294740 @default.
- W4384306306 cites W2781956876 @default.
- W4384306306 cites W2800610918 @default.
- W4384306306 cites W2803548657 @default.
- W4384306306 cites W2890192101 @default.
- W4384306306 cites W2893769615 @default.
- W4384306306 cites W2895555270 @default.
- W4384306306 cites W2895565558 @default.
- W4384306306 cites W2901027061 @default.
- W4384306306 cites W2902994997 @default.
- W4384306306 cites W2906101038 @default.
- W4384306306 cites W2911964244 @default.
- W4384306306 cites W2915309218 @default.
- W4384306306 cites W2943510535 @default.
- W4384306306 cites W2944178746 @default.
- W4384306306 cites W2945639684 @default.
- W4384306306 cites W2947719166 @default.
- W4384306306 cites W2957412640 @default.
- W4384306306 cites W2969193009 @default.
- W4384306306 cites W2969857520 @default.
- W4384306306 cites W2970393605 @default.
- W4384306306 cites W2970436015 @default.
- W4384306306 cites W2973447787 @default.
- W4384306306 cites W2980539464 @default.
- W4384306306 cites W2998953382 @default.
- W4384306306 cites W3006766015 @default.
- W4384306306 cites W3009910008 @default.
- W4384306306 cites W3011924048 @default.
- W4384306306 cites W3023973226 @default.
- W4384306306 cites W3029018485 @default.
- W4384306306 cites W3032971983 @default.
- W4384306306 cites W3037300843 @default.
- W4384306306 cites W3046176876 @default.
- W4384306306 cites W3048873106 @default.
- W4384306306 cites W3095177470 @default.
- W4384306306 cites W3096735051 @default.
- W4384306306 cites W3105582364 @default.
- W4384306306 cites W3109537027 @default.
- W4384306306 cites W3111944458 @default.
- W4384306306 cites W3120517238 @default.
- W4384306306 cites W3126247852 @default.
- W4384306306 cites W3127879965 @default.
- W4384306306 cites W3128908801 @default.
- W4384306306 cites W3129418432 @default.
- W4384306306 cites W3130820175 @default.
- W4384306306 cites W3153996094 @default.
- W4384306306 cites W3162214236 @default.
- W4384306306 cites W3206204534 @default.
- W4384306306 cites W3207421260 @default.
- W4384306306 cites W3209935396 @default.
- W4384306306 cites W3210026893 @default.
- W4384306306 cites W3212403056 @default.
- W4384306306 cites W3215323739 @default.
- W4384306306 cites W4206931405 @default.
- W4384306306 cites W4210417658 @default.
- W4384306306 cites W4210508652 @default.
- W4384306306 cites W4220781635 @default.
- W4384306306 cites W4286797646 @default.
- W4384306306 cites W4313465433 @default.
- W4384306306 doi "https://doi.org/10.1016/j.istruc.2023.07.040" @default.
- W4384306306 hasPublicationYear "2023" @default.
- W4384306306 type Work @default.