Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384338169> ?p ?o ?g. }
- W4384338169 endingPage "5522" @default.
- W4384338169 startingPage "5509" @default.
- W4384338169 abstract "In recent generations of the digital world medical data in Recommender Systems. Health Care Recommender System (HCRS) analyses the medical data and then predicts the user’s or patient’s illness. Nowadays, healthcare data is used by various users or patients in recommendation systems which are useful for everyone. Analysing and predicting medical data provides awareness to users and these data predictions may be enriched using various techniques of RS. Machine learning techniques are used to make sure that health data is reliable and of high quality. In every RS the issues are targeted such as scalability, sparsity and cold start problems. In many social networking applications, these issues are resolved using ML algorithms. However, there is a significant gap between IT systems and medical diagnosis. The fuzzy genetic method is used in HCRS in order to bridge the gap between IT and healthcare applications. Through the use of the mutation and crossover operators, a real-value genetic method is used in this to compute similarity. With the user’s extra personalized information, fuzzy rules are later generated for the database. The Hybrid fuzzy-genetic method, also known as this situation, combines both techniques to improve recommendation quality. Utilizing this method will improve the quality of the recommendation process by discovering the most precise similarity measures among different users. Six factors are subjected to fuzzification, including age, gender, employment, height, weight, and region. Genre-interesting measure weights are then used, including Very Light, Light, Average, Heavy, and Very Heavy. Finally, the evaluation metrics used MAE and RMSE to evaluate the recommendation accuracy which showed the best results in comparison with baseline approaches such as Convolutional Neural Networks and Restricted Boltzman Machine." @default.
- W4384338169 created "2023-07-15" @default.
- W4384338169 creator A5027610180 @default.
- W4384338169 creator A5059612866 @default.
- W4384338169 creator A5080307602 @default.
- W4384338169 creator A5080733489 @default.
- W4384338169 creator A5084293980 @default.
- W4384338169 creator A5092471328 @default.
- W4384338169 date "2023-10-04" @default.
- W4384338169 modified "2023-10-09" @default.
- W4384338169 title "A novel approach to enhance the quality of health care recommender system using fuzzy-genetic approach" @default.
- W4384338169 cites W2039285368 @default.
- W4384338169 cites W2084127140 @default.
- W4384338169 cites W2096899416 @default.
- W4384338169 cites W2115760869 @default.
- W4384338169 cites W2136262653 @default.
- W4384338169 cites W2160118270 @default.
- W4384338169 cites W2171960770 @default.
- W4384338169 cites W2285118877 @default.
- W4384338169 cites W2493724319 @default.
- W4384338169 cites W2510113590 @default.
- W4384338169 cites W2533696134 @default.
- W4384338169 cites W2595913261 @default.
- W4384338169 cites W2761209853 @default.
- W4384338169 cites W2790835580 @default.
- W4384338169 cites W2792984424 @default.
- W4384338169 cites W2801165387 @default.
- W4384338169 cites W2899849645 @default.
- W4384338169 cites W2902143327 @default.
- W4384338169 cites W2905186294 @default.
- W4384338169 cites W2916171207 @default.
- W4384338169 cites W2942471816 @default.
- W4384338169 cites W2949854251 @default.
- W4384338169 cites W2963929932 @default.
- W4384338169 cites W3035059451 @default.
- W4384338169 cites W3111523098 @default.
- W4384338169 cites W3129907306 @default.
- W4384338169 cites W3142251149 @default.
- W4384338169 cites W4200199159 @default.
- W4384338169 cites W4280651421 @default.
- W4384338169 doi "https://doi.org/10.3233/jifs-224257" @default.
- W4384338169 hasPublicationYear "2023" @default.
- W4384338169 type Work @default.
- W4384338169 citedByCount "0" @default.
- W4384338169 crossrefType "journal-article" @default.
- W4384338169 hasAuthorship W4384338169A5027610180 @default.
- W4384338169 hasAuthorship W4384338169A5059612866 @default.
- W4384338169 hasAuthorship W4384338169A5080307602 @default.
- W4384338169 hasAuthorship W4384338169A5080733489 @default.
- W4384338169 hasAuthorship W4384338169A5084293980 @default.
- W4384338169 hasAuthorship W4384338169A5092471328 @default.
- W4384338169 hasConcept C103278499 @default.
- W4384338169 hasConcept C111472728 @default.
- W4384338169 hasConcept C115961682 @default.
- W4384338169 hasConcept C119857082 @default.
- W4384338169 hasConcept C122507166 @default.
- W4384338169 hasConcept C124101348 @default.
- W4384338169 hasConcept C138885662 @default.
- W4384338169 hasConcept C154945302 @default.
- W4384338169 hasConcept C160735492 @default.
- W4384338169 hasConcept C162324750 @default.
- W4384338169 hasConcept C21569690 @default.
- W4384338169 hasConcept C23123220 @default.
- W4384338169 hasConcept C2779530757 @default.
- W4384338169 hasConcept C41008148 @default.
- W4384338169 hasConcept C48044578 @default.
- W4384338169 hasConcept C50522688 @default.
- W4384338169 hasConcept C557471498 @default.
- W4384338169 hasConcept C58166 @default.
- W4384338169 hasConcept C75684735 @default.
- W4384338169 hasConcept C77088390 @default.
- W4384338169 hasConcept C8880873 @default.
- W4384338169 hasConceptScore W4384338169C103278499 @default.
- W4384338169 hasConceptScore W4384338169C111472728 @default.
- W4384338169 hasConceptScore W4384338169C115961682 @default.
- W4384338169 hasConceptScore W4384338169C119857082 @default.
- W4384338169 hasConceptScore W4384338169C122507166 @default.
- W4384338169 hasConceptScore W4384338169C124101348 @default.
- W4384338169 hasConceptScore W4384338169C138885662 @default.
- W4384338169 hasConceptScore W4384338169C154945302 @default.
- W4384338169 hasConceptScore W4384338169C160735492 @default.
- W4384338169 hasConceptScore W4384338169C162324750 @default.
- W4384338169 hasConceptScore W4384338169C21569690 @default.
- W4384338169 hasConceptScore W4384338169C23123220 @default.
- W4384338169 hasConceptScore W4384338169C2779530757 @default.
- W4384338169 hasConceptScore W4384338169C41008148 @default.
- W4384338169 hasConceptScore W4384338169C48044578 @default.
- W4384338169 hasConceptScore W4384338169C50522688 @default.
- W4384338169 hasConceptScore W4384338169C557471498 @default.
- W4384338169 hasConceptScore W4384338169C58166 @default.
- W4384338169 hasConceptScore W4384338169C75684735 @default.
- W4384338169 hasConceptScore W4384338169C77088390 @default.
- W4384338169 hasConceptScore W4384338169C8880873 @default.
- W4384338169 hasIssue "4" @default.
- W4384338169 hasLocation W43843381691 @default.
- W4384338169 hasOpenAccess W4384338169 @default.
- W4384338169 hasPrimaryLocation W43843381691 @default.
- W4384338169 hasRelatedWork W1484355083 @default.