Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384338170> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4384338170 endingPage "16" @default.
- W4384338170 startingPage "1" @default.
- W4384338170 abstract "Having one’s life threatened by a disease like ovarian cancer is the single most crucial thing in the whole world. It is difficult to achieve high performance without sacrificing computational efficiency; the results of the denoising process are not as good as they could be; the proposed models are nonconvex and involve several manually chosen parameters, which provides some leeway to boost denoising performance; the methods generally involve a complex optimisation problem in the testing stage; Here at DnCNN, we’ve developed our own version of the deep ii learning model, a discriminative learning technique. The goal was to eliminate the need for the iterative optimisation technique at the time it was being evaluated. The goal was to avoid having to go through testing altogether, thus this was done. It is highly advised to use a Deep CNN model, the efficacy of which can be evaluated by comparing it to that of more traditional filters and pre-trained DnCNN. The Deep CNN strategy has been shown to be the best solution to minimise noise when an image is destroyed by Gaussian or speckle noise with known or unknown noise levels. This is because Deep CNN uses convolutional neural networks, which are trained using data. This is because convolutional neural networks, which are the foundation of Deep CNN, are designed to learn from data and then use that learning to make predictions. Deep CNN achieves a 98.45% accuracy rate during testing, with an error rate of just 0.002%." @default.
- W4384338170 created "2023-07-15" @default.
- W4384338170 creator A5023527491 @default.
- W4384338170 creator A5032680279 @default.
- W4384338170 creator A5064736288 @default.
- W4384338170 creator A5083924244 @default.
- W4384338170 date "2023-07-13" @default.
- W4384338170 modified "2023-09-25" @default.
- W4384338170 title "Detection of ovarian follicles cancer cells using hybrid optimization technique with deep convolutional neural network classifier" @default.
- W4384338170 cites W1985473599 @default.
- W4384338170 cites W1990965460 @default.
- W4384338170 cites W2093324515 @default.
- W4384338170 cites W2096335059 @default.
- W4384338170 cites W2118656195 @default.
- W4384338170 cites W2145803449 @default.
- W4384338170 cites W2154639585 @default.
- W4384338170 cites W2164432858 @default.
- W4384338170 cites W2313079918 @default.
- W4384338170 cites W2734973828 @default.
- W4384338170 cites W2893656853 @default.
- W4384338170 cites W4293230402 @default.
- W4384338170 cites W4308640915 @default.
- W4384338170 cites W4310067553 @default.
- W4384338170 cites W4320808513 @default.
- W4384338170 doi "https://doi.org/10.3233/jifs-231322" @default.
- W4384338170 hasPublicationYear "2023" @default.
- W4384338170 type Work @default.
- W4384338170 citedByCount "0" @default.
- W4384338170 crossrefType "journal-article" @default.
- W4384338170 hasAuthorship W4384338170A5023527491 @default.
- W4384338170 hasAuthorship W4384338170A5032680279 @default.
- W4384338170 hasAuthorship W4384338170A5064736288 @default.
- W4384338170 hasAuthorship W4384338170A5083924244 @default.
- W4384338170 hasConcept C102290492 @default.
- W4384338170 hasConcept C108583219 @default.
- W4384338170 hasConcept C119857082 @default.
- W4384338170 hasConcept C153180895 @default.
- W4384338170 hasConcept C154945302 @default.
- W4384338170 hasConcept C163294075 @default.
- W4384338170 hasConcept C180940675 @default.
- W4384338170 hasConcept C41008148 @default.
- W4384338170 hasConcept C81363708 @default.
- W4384338170 hasConcept C97931131 @default.
- W4384338170 hasConceptScore W4384338170C102290492 @default.
- W4384338170 hasConceptScore W4384338170C108583219 @default.
- W4384338170 hasConceptScore W4384338170C119857082 @default.
- W4384338170 hasConceptScore W4384338170C153180895 @default.
- W4384338170 hasConceptScore W4384338170C154945302 @default.
- W4384338170 hasConceptScore W4384338170C163294075 @default.
- W4384338170 hasConceptScore W4384338170C180940675 @default.
- W4384338170 hasConceptScore W4384338170C41008148 @default.
- W4384338170 hasConceptScore W4384338170C81363708 @default.
- W4384338170 hasConceptScore W4384338170C97931131 @default.
- W4384338170 hasLocation W43843381701 @default.
- W4384338170 hasOpenAccess W4384338170 @default.
- W4384338170 hasPrimaryLocation W43843381701 @default.
- W4384338170 hasRelatedWork W2024160000 @default.
- W4384338170 hasRelatedWork W2729514902 @default.
- W4384338170 hasRelatedWork W2731899572 @default.
- W4384338170 hasRelatedWork W2773500201 @default.
- W4384338170 hasRelatedWork W2999805992 @default.
- W4384338170 hasRelatedWork W3116150086 @default.
- W4384338170 hasRelatedWork W3133861977 @default.
- W4384338170 hasRelatedWork W4200173597 @default.
- W4384338170 hasRelatedWork W4312417841 @default.
- W4384338170 hasRelatedWork W4321369474 @default.
- W4384338170 isParatext "false" @default.
- W4384338170 isRetracted "false" @default.
- W4384338170 workType "article" @default.