Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384338625> ?p ?o ?g. }
- W4384338625 endingPage "2581" @default.
- W4384338625 startingPage "2581" @default.
- W4384338625 abstract "Flooding in urban streams can occur suddenly and cause major environmental and infrastructure destruction. Due to the high amounts of impervious surfaces in urban watersheds, runoff from precipitation events can cause a rapid increase in stream water levels, leading to flooding. With increasing urbanization, it is critical to understand how urban stream channels will respond to precipitation events to prevent catastrophic flooding. This study uses the Prophet time series machine learning algorithm to forecast hourly changes in water level in an urban stream, Hunnicutt Creek, Clemson, South Carolina (SC), USA. Machine learning was highly accurate in predicting changes in water level for five locations along the stream with R2 values greater than 0.9. Yet, it can be challenging to understand how these water level prediction values will translate to water volume in the stream channel. Therefore, this study collected terrestrial Light Detection and Ranging (LiDAR) data for Hunnicutt Creek to model these areas in 3D to illustrate how the predicted changes in water levels correspond to changes in water levels in the stream channel. The predicted water levels were also used to calculate upstream flood volumes to provide further context for how small changes in the water level correspond to changes in the stream channel. Overall, the methodology determined that the areas of Hunnicutt Creek with more urban impacts experience larger rises in stream levels and greater volumes of upstream water during storm events. Together, this innovative methodology combining machine learning, terrestrial LiDAR, 3D modeling, and volume calculations provides new techniques to understand flood-prone areas in urban stream environments." @default.
- W4384338625 created "2023-07-15" @default.
- W4384338625 creator A5032599337 @default.
- W4384338625 creator A5047303033 @default.
- W4384338625 creator A5047632598 @default.
- W4384338625 creator A5068542886 @default.
- W4384338625 creator A5082439659 @default.
- W4384338625 date "2023-07-14" @default.
- W4384338625 modified "2023-09-29" @default.
- W4384338625 title "Evaluating Urban Stream Flooding with Machine Learning, LiDAR, and 3D Modeling" @default.
- W4384338625 cites W1665366368 @default.
- W4384338625 cites W1964688226 @default.
- W4384338625 cites W1981928829 @default.
- W4384338625 cites W1992023913 @default.
- W4384338625 cites W1992866626 @default.
- W4384338625 cites W2000702011 @default.
- W4384338625 cites W2009356591 @default.
- W4384338625 cites W2031661014 @default.
- W4384338625 cites W2045388733 @default.
- W4384338625 cites W2053123887 @default.
- W4384338625 cites W2055412520 @default.
- W4384338625 cites W2071669741 @default.
- W4384338625 cites W2082091525 @default.
- W4384338625 cites W2085118154 @default.
- W4384338625 cites W2092924074 @default.
- W4384338625 cites W2116015788 @default.
- W4384338625 cites W2118786051 @default.
- W4384338625 cites W2135134353 @default.
- W4384338625 cites W2140449910 @default.
- W4384338625 cites W2164017619 @default.
- W4384338625 cites W2170690812 @default.
- W4384338625 cites W2252436850 @default.
- W4384338625 cites W2315555627 @default.
- W4384338625 cites W2495430214 @default.
- W4384338625 cites W2513896953 @default.
- W4384338625 cites W2561200012 @default.
- W4384338625 cites W2576484085 @default.
- W4384338625 cites W2593982509 @default.
- W4384338625 cites W2606780533 @default.
- W4384338625 cites W2747599906 @default.
- W4384338625 cites W2887451828 @default.
- W4384338625 cites W2915382165 @default.
- W4384338625 cites W2964006806 @default.
- W4384338625 cites W2965981986 @default.
- W4384338625 cites W2971755593 @default.
- W4384338625 cites W3001839191 @default.
- W4384338625 cites W3003196087 @default.
- W4384338625 cites W3003871734 @default.
- W4384338625 cites W3004192024 @default.
- W4384338625 cites W3033820437 @default.
- W4384338625 cites W3035664094 @default.
- W4384338625 cites W3092406386 @default.
- W4384338625 cites W3110015110 @default.
- W4384338625 cites W3130783145 @default.
- W4384338625 cites W3134694888 @default.
- W4384338625 cites W3146352874 @default.
- W4384338625 cites W3182706339 @default.
- W4384338625 cites W3198139119 @default.
- W4384338625 cites W3198819506 @default.
- W4384338625 cites W3201614037 @default.
- W4384338625 cites W3210744571 @default.
- W4384338625 cites W3214842861 @default.
- W4384338625 cites W4200321701 @default.
- W4384338625 cites W4206268939 @default.
- W4384338625 cites W4220975437 @default.
- W4384338625 cites W4230777928 @default.
- W4384338625 cites W4231736634 @default.
- W4384338625 cites W4284880463 @default.
- W4384338625 cites W4285393460 @default.
- W4384338625 cites W4312000435 @default.
- W4384338625 cites W4313389061 @default.
- W4384338625 cites W4323659771 @default.
- W4384338625 cites W4362580493 @default.
- W4384338625 cites W4379094562 @default.
- W4384338625 doi "https://doi.org/10.3390/w15142581" @default.
- W4384338625 hasPublicationYear "2023" @default.
- W4384338625 type Work @default.
- W4384338625 citedByCount "1" @default.
- W4384338625 countsByYear W43843386252023 @default.
- W4384338625 crossrefType "journal-article" @default.
- W4384338625 hasAuthorship W4384338625A5032599337 @default.
- W4384338625 hasAuthorship W4384338625A5047303033 @default.
- W4384338625 hasAuthorship W4384338625A5047632598 @default.
- W4384338625 hasAuthorship W4384338625A5068542886 @default.
- W4384338625 hasAuthorship W4384338625A5082439659 @default.
- W4384338625 hasBestOaLocation W43843386251 @default.
- W4384338625 hasConcept C105306849 @default.
- W4384338625 hasConcept C107054158 @default.
- W4384338625 hasConcept C127313418 @default.
- W4384338625 hasConcept C153294291 @default.
- W4384338625 hasConcept C15744967 @default.
- W4384338625 hasConcept C166957645 @default.
- W4384338625 hasConcept C173051318 @default.
- W4384338625 hasConcept C186594467 @default.
- W4384338625 hasConcept C187320778 @default.
- W4384338625 hasConcept C18903297 @default.
- W4384338625 hasConcept C205649164 @default.
- W4384338625 hasConcept C2668921 @default.