Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384340050> ?p ?o ?g. }
- W4384340050 endingPage "7822" @default.
- W4384340050 startingPage "7799" @default.
- W4384340050 abstract "Abstract. In this study, airborne measurements of the sum of hydroperoxyl (HO2) and organic peroxy (RO2) radicals that react with nitrogen monoxide (NO) to produce nitrogen dioxide (NO2), coupled with actinometry and other key trace gases measurements, have been used to test the current understanding of the fast photochemistry in the outflow of major population centres. The measurements were made during the airborne campaign of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) project in Europe on board the High Altitude and Long Range Research Aircraft (HALO). The measurements of RO2∗ on HALO were made using the in situ instrument Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS). RO2∗ is to a good approximation the sum of peroxy radicals reacting with NO to produce NO2. RO2∗ mixing ratios up to 120 pptv were observed in air masses of different origins and composition under different local actinometric conditions during seven HALO research flights in July 2017 over Europe. Radical production rates were estimated using knowledge of the photolysis frequencies and the RO2∗ precursor concentrations measured on board, as well as the relevant rate coefficients. Generally, high RO2∗ concentrations were measured in air masses with high production rates. In the air masses investigated, RO2∗ is primarily produced by the reaction of O1D with water vapour and the photolysis of nitrous acid (HONO) and of the oxygenated volatile organic compounds (OVOCs, e.g. formaldehyde (HCHO) and glyoxal (CHOCHO)). Due to their short lifetime in most environments, the RO2∗ concentrations are expected to be in a photostationary steady state (PSS), i.e. a balance between production and loss rates is assumed. The RO2∗ production and loss rates and the suitability of PSS assumptions to estimate the RO2∗ mixing ratios and variability during the airborne observations are discussed. The PSS assumption for RO2∗ is considered robust enough to calculate RO2∗ mixing ratios for most conditions encountered in the air masses measured. The similarities and discrepancies between measured and PSS calculated RO2∗ mixing ratios are discussed. The dominant terminating processes for RO2∗ in the pollution plumes measured up to 2000 m are the formation of nitrous acid, nitric acid, and organic nitrates. Above 2000 m, HO2–HO2 and HO2–RO2 reactions dominate the RO2∗ removal. RO2∗ calculations by the PSS analytical expression inside the pollution plumes probed often underestimated the measurements. The underestimation is attributed to the limitations of the PSS equation used for the analysis. In particular, this expression does not account for the yields of RO2∗ from the oxidation and photolysis of volatile organic compounds, VOCs, and OVOCs other than those measured during the EMeRGe research flights in Europe. In air masses with NO mixing ratios ≤50 pptv and low VOC/NO ratios, the RO2∗ measured is overestimated by the analytical expression. This may be caused by the formation of H2O and O2 from OH and HO2, being about 4 times faster than the rate of the OH oxidation reaction of the dominant OVOCs considered." @default.
- W4384340050 created "2023-07-15" @default.
- W4384340050 creator A5001041953 @default.
- W4384340050 creator A5005580791 @default.
- W4384340050 creator A5007772091 @default.
- W4384340050 creator A5012533780 @default.
- W4384340050 creator A5013641214 @default.
- W4384340050 creator A5024482856 @default.
- W4384340050 creator A5033108232 @default.
- W4384340050 creator A5046253472 @default.
- W4384340050 creator A5046800722 @default.
- W4384340050 creator A5048202110 @default.
- W4384340050 creator A5050186411 @default.
- W4384340050 creator A5055840162 @default.
- W4384340050 creator A5063746678 @default.
- W4384340050 creator A5069069843 @default.
- W4384340050 creator A5074344722 @default.
- W4384340050 creator A5074989291 @default.
- W4384340050 date "2023-07-14" @default.
- W4384340050 modified "2023-10-18" @default.
- W4384340050 title "Airborne observations of peroxy radicals during the EMeRGe campaign in Europe" @default.
- W4384340050 cites W1522959326 @default.
- W4384340050 cites W1705706251 @default.
- W4384340050 cites W1971440665 @default.
- W4384340050 cites W1988689801 @default.
- W4384340050 cites W1999946082 @default.
- W4384340050 cites W2007761431 @default.
- W4384340050 cites W2015735547 @default.
- W4384340050 cites W2016718408 @default.
- W4384340050 cites W2024091880 @default.
- W4384340050 cites W2029879781 @default.
- W4384340050 cites W2031978365 @default.
- W4384340050 cites W2035627301 @default.
- W4384340050 cites W2036975202 @default.
- W4384340050 cites W2037470474 @default.
- W4384340050 cites W2042889474 @default.
- W4384340050 cites W2050461779 @default.
- W4384340050 cites W2055869887 @default.
- W4384340050 cites W2073535461 @default.
- W4384340050 cites W2075630751 @default.
- W4384340050 cites W2088059691 @default.
- W4384340050 cites W2091201739 @default.
- W4384340050 cites W2092488827 @default.
- W4384340050 cites W2097763230 @default.
- W4384340050 cites W2100156770 @default.
- W4384340050 cites W2110356767 @default.
- W4384340050 cites W2115947688 @default.
- W4384340050 cites W2117440360 @default.
- W4384340050 cites W2126098648 @default.
- W4384340050 cites W2135300398 @default.
- W4384340050 cites W2138051081 @default.
- W4384340050 cites W2138488118 @default.
- W4384340050 cites W2141515313 @default.
- W4384340050 cites W2148073198 @default.
- W4384340050 cites W2150740366 @default.
- W4384340050 cites W2157901498 @default.
- W4384340050 cites W2162789033 @default.
- W4384340050 cites W2164868576 @default.
- W4384340050 cites W2227669647 @default.
- W4384340050 cites W2335473320 @default.
- W4384340050 cites W2483574170 @default.
- W4384340050 cites W2556450375 @default.
- W4384340050 cites W2609835339 @default.
- W4384340050 cites W2750937983 @default.
- W4384340050 cites W2759307553 @default.
- W4384340050 cites W2764038486 @default.
- W4384340050 cites W2797722950 @default.
- W4384340050 cites W2890385543 @default.
- W4384340050 cites W2969434836 @default.
- W4384340050 cites W2982321099 @default.
- W4384340050 cites W3024191730 @default.
- W4384340050 cites W3083297161 @default.
- W4384340050 cites W3156750829 @default.
- W4384340050 cites W4229058951 @default.
- W4384340050 doi "https://doi.org/10.5194/acp-23-7799-2023" @default.
- W4384340050 hasPublicationYear "2023" @default.
- W4384340050 type Work @default.
- W4384340050 citedByCount "0" @default.
- W4384340050 crossrefType "journal-article" @default.
- W4384340050 hasAuthorship W4384340050A5001041953 @default.
- W4384340050 hasAuthorship W4384340050A5005580791 @default.
- W4384340050 hasAuthorship W4384340050A5007772091 @default.
- W4384340050 hasAuthorship W4384340050A5012533780 @default.
- W4384340050 hasAuthorship W4384340050A5013641214 @default.
- W4384340050 hasAuthorship W4384340050A5024482856 @default.
- W4384340050 hasAuthorship W4384340050A5033108232 @default.
- W4384340050 hasAuthorship W4384340050A5046253472 @default.
- W4384340050 hasAuthorship W4384340050A5046800722 @default.
- W4384340050 hasAuthorship W4384340050A5048202110 @default.
- W4384340050 hasAuthorship W4384340050A5050186411 @default.
- W4384340050 hasAuthorship W4384340050A5055840162 @default.
- W4384340050 hasAuthorship W4384340050A5063746678 @default.
- W4384340050 hasAuthorship W4384340050A5069069843 @default.
- W4384340050 hasAuthorship W4384340050A5074344722 @default.
- W4384340050 hasAuthorship W4384340050A5074989291 @default.
- W4384340050 hasBestOaLocation W43843400501 @default.
- W4384340050 hasConcept C105923489 @default.
- W4384340050 hasConcept C107872376 @default.