Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384340108> ?p ?o ?g. }
- W4384340108 abstract "Abstract Introduction Estimation of brain amyloid accumulation is valuable for evaluation of patients with cognitive impairment in both research and clinical routine. The development of high throughput and accurate strategies for the determination of amyloid status could be an important tool in patient selection for clinical trials and amyloid directed treatment. Here, we propose the use of deep learning to quantify amyloid accumulation using standardized uptake value ratio (SUVR) and classify amyloid status based on their PET images. Methods A total of 1309 patients with cognitive impairment scanned with [ 11 C]PIB PET/CT or PET/MRI were included. Two convolutional neural networks (CNNs) for reading-based amyloid status and SUVR prediction were trained using 75% of the PET/CT data. The remaining PET/CT ( n = 300) and all PET/MRI ( n = 100) data was used for evaluation. Results The prevalence of amyloid positive patients was 61%. The amyloid status classification model reproduced the expert reader’s classification with 99% accuracy. There was a high correlation between reference and predicted SUVR ( R 2 = 0.96). Both reference and predicted SUVR had an accuracy of 97% compared to expert classification when applying a predetermined SUVR threshold of 1.35 for binary classification of amyloid status. Conclusion The proposed CNN models reproduced both the expert classification and quantitative measure of amyloid accumulation in a large local dataset. This method has the potential to replace or simplify existing clinical routines and can facilitate fast and accurate classification well-suited for a high throughput pipeline." @default.
- W4384340108 created "2023-07-15" @default.
- W4384340108 creator A5007149982 @default.
- W4384340108 creator A5035272262 @default.
- W4384340108 creator A5046765308 @default.
- W4384340108 creator A5052942530 @default.
- W4384340108 creator A5054072383 @default.
- W4384340108 creator A5062430417 @default.
- W4384340108 creator A5066328546 @default.
- W4384340108 creator A5072165110 @default.
- W4384340108 date "2023-07-14" @default.
- W4384340108 modified "2023-09-26" @default.
- W4384340108 title "Estimation of brain amyloid accumulation using deep learning in clinical [11C]PiB PET imaging" @default.
- W4384340108 cites W1837941181 @default.
- W4384340108 cites W2026752633 @default.
- W4384340108 cites W2027981446 @default.
- W4384340108 cites W2071881327 @default.
- W4384340108 cites W2103346709 @default.
- W4384340108 cites W2116591217 @default.
- W4384340108 cites W2129771097 @default.
- W4384340108 cites W2133649359 @default.
- W4384340108 cites W2160597466 @default.
- W4384340108 cites W2487877762 @default.
- W4384340108 cites W2529649944 @default.
- W4384340108 cites W2560999412 @default.
- W4384340108 cites W2798054687 @default.
- W4384340108 cites W2908249658 @default.
- W4384340108 cites W2964171289 @default.
- W4384340108 cites W2968446587 @default.
- W4384340108 cites W2977883299 @default.
- W4384340108 cites W2980409439 @default.
- W4384340108 cites W3033224096 @default.
- W4384340108 cites W3082489285 @default.
- W4384340108 cites W3091146869 @default.
- W4384340108 cites W3112489665 @default.
- W4384340108 cites W4225741213 @default.
- W4384340108 cites W4281676526 @default.
- W4384340108 cites W4310461604 @default.
- W4384340108 doi "https://doi.org/10.1186/s40658-023-00562-7" @default.
- W4384340108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37450069" @default.
- W4384340108 hasPublicationYear "2023" @default.
- W4384340108 type Work @default.
- W4384340108 citedByCount "0" @default.
- W4384340108 crossrefType "journal-article" @default.
- W4384340108 hasAuthorship W4384340108A5007149982 @default.
- W4384340108 hasAuthorship W4384340108A5035272262 @default.
- W4384340108 hasAuthorship W4384340108A5046765308 @default.
- W4384340108 hasAuthorship W4384340108A5052942530 @default.
- W4384340108 hasAuthorship W4384340108A5054072383 @default.
- W4384340108 hasAuthorship W4384340108A5062430417 @default.
- W4384340108 hasAuthorship W4384340108A5066328546 @default.
- W4384340108 hasAuthorship W4384340108A5072165110 @default.
- W4384340108 hasBestOaLocation W43843401081 @default.
- W4384340108 hasConcept C118552586 @default.
- W4384340108 hasConcept C142724271 @default.
- W4384340108 hasConcept C153180895 @default.
- W4384340108 hasConcept C154945302 @default.
- W4384340108 hasConcept C199374082 @default.
- W4384340108 hasConcept C2775842073 @default.
- W4384340108 hasConcept C2777633098 @default.
- W4384340108 hasConcept C2779134260 @default.
- W4384340108 hasConcept C2781073650 @default.
- W4384340108 hasConcept C2984915365 @default.
- W4384340108 hasConcept C2989005 @default.
- W4384340108 hasConcept C41008148 @default.
- W4384340108 hasConcept C58693492 @default.
- W4384340108 hasConcept C71924100 @default.
- W4384340108 hasConcept C81363708 @default.
- W4384340108 hasConceptScore W4384340108C118552586 @default.
- W4384340108 hasConceptScore W4384340108C142724271 @default.
- W4384340108 hasConceptScore W4384340108C153180895 @default.
- W4384340108 hasConceptScore W4384340108C154945302 @default.
- W4384340108 hasConceptScore W4384340108C199374082 @default.
- W4384340108 hasConceptScore W4384340108C2775842073 @default.
- W4384340108 hasConceptScore W4384340108C2777633098 @default.
- W4384340108 hasConceptScore W4384340108C2779134260 @default.
- W4384340108 hasConceptScore W4384340108C2781073650 @default.
- W4384340108 hasConceptScore W4384340108C2984915365 @default.
- W4384340108 hasConceptScore W4384340108C2989005 @default.
- W4384340108 hasConceptScore W4384340108C41008148 @default.
- W4384340108 hasConceptScore W4384340108C58693492 @default.
- W4384340108 hasConceptScore W4384340108C71924100 @default.
- W4384340108 hasConceptScore W4384340108C81363708 @default.
- W4384340108 hasIssue "1" @default.
- W4384340108 hasLocation W43843401081 @default.
- W4384340108 hasLocation W43843401082 @default.
- W4384340108 hasLocation W43843401083 @default.
- W4384340108 hasOpenAccess W4384340108 @default.
- W4384340108 hasPrimaryLocation W43843401081 @default.
- W4384340108 hasRelatedWork W1982187894 @default.
- W4384340108 hasRelatedWork W2111347914 @default.
- W4384340108 hasRelatedWork W2117290479 @default.
- W4384340108 hasRelatedWork W2138033649 @default.
- W4384340108 hasRelatedWork W2165947974 @default.
- W4384340108 hasRelatedWork W2186251212 @default.
- W4384340108 hasRelatedWork W2318587403 @default.
- W4384340108 hasRelatedWork W2767651786 @default.
- W4384340108 hasRelatedWork W2912288872 @default.
- W4384340108 hasRelatedWork W564581980 @default.
- W4384340108 hasVolume "10" @default.