Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384340322> ?p ?o ?g. }
- W4384340322 endingPage "703" @default.
- W4384340322 startingPage "693" @default.
- W4384340322 abstract "ConspectusHigh-energy density, efficient, robust, and environmentally friendly electrical energy storage and conversion systems are crucial for ensuring the resilience of power grids and enabling effective use of intermittent renewable energy sources like solar and wind power. These systems have also been gaining more and more attention for applications in electric vehicles. Metal–air/O2 batteries, particularly zinc–air (aqueous) and lithium–air/O2 (nonaqueous) rechargeable batteries, are showing great promise as the next generation of energy storage systems due to their considerably higher energy density compared to the conventional lithium-ion batteries (1080–3500 vs 200–250 Wh/kg). In addition, there are ongoing studies of hydrogen economy exploring hydrogen gas as a carbon-free energy carrier. This encompasses various aspects such as hydrogen production and its conversion into electricity or other valuable chemical commodities through advanced systems, such as water splitting and fuel cells. However, these systems often suffer from large overpotentials upon operation due to the sluggish oxygen reduction and evolution reactions, requiring the use of catalysts. To address these issues, the introduction of redox mediators (RMs) via redox targeting (RT) reactions provides an elegant solution for improving the efficiency of energy storage and conversion systems.This Account consolidates our research efforts and other notable studies on the use of RMs as charge carriers in energy storage and conversion systems through RT reactions, with a primary focus on redox-mediated oxygen electrochemistry. We begin by presenting the concept and history of the RT reactions, from their initial form utilizing two RMs to the current iteration utilizing a single RM driven by the Nernstian potential difference between the RM and energy storage materials (EnSMs) during charging and discharging. We then provide a detailed review of the redox-mediated oxygen electrochemistry and its applications in both nonaqueous and aqueous energy storage and conversion systems. This includes an exploration of the mechanisms behind the redox-mediated oxygen evolution and reduction reactions (OER/ORR) and battery design approaches in lithium–air/O2 batteries to address issues related to low discharge capacity caused by the insulating nature of Li2O2. In aqueous systems, the redox-mediated oxygen electrochemistry is more extensively discussed, covering both 2-electron- and 4-electron-based reactions across acid to alkaline systems, with a particular focus on their applications in fuel cells, water splitting systems, hydrogen peroxide production, and zinc-air batteries. We also discuss the various RMs used in RT-based systems and highlight the challenges and future opportunities for the implementation of redox-mediated oxygen electrochemistry in energy storage and conversion systems, including both fundamental studies and practical applications." @default.
- W4384340322 created "2023-07-15" @default.
- W4384340322 creator A5014545036 @default.
- W4384340322 creator A5056409865 @default.
- W4384340322 date "2023-07-13" @default.
- W4384340322 modified "2023-09-25" @default.
- W4384340322 title "Redox-Mediated Oxygen Electrochemistry and the Materials Aspects" @default.
- W4384340322 cites W1935840347 @default.
- W4384340322 cites W1970996323 @default.
- W4384340322 cites W1976003940 @default.
- W4384340322 cites W1981768663 @default.
- W4384340322 cites W1986647637 @default.
- W4384340322 cites W1987262360 @default.
- W4384340322 cites W1988656148 @default.
- W4384340322 cites W1991712290 @default.
- W4384340322 cites W2010697934 @default.
- W4384340322 cites W2024753061 @default.
- W4384340322 cites W2039738197 @default.
- W4384340322 cites W2045232233 @default.
- W4384340322 cites W2104393686 @default.
- W4384340322 cites W2113716887 @default.
- W4384340322 cites W2116865021 @default.
- W4384340322 cites W2124535216 @default.
- W4384340322 cites W2125969838 @default.
- W4384340322 cites W2140946262 @default.
- W4384340322 cites W2162036593 @default.
- W4384340322 cites W2244699475 @default.
- W4384340322 cites W2272273184 @default.
- W4384340322 cites W2324882829 @default.
- W4384340322 cites W2328172157 @default.
- W4384340322 cites W2329533199 @default.
- W4384340322 cites W2342475091 @default.
- W4384340322 cites W2411235334 @default.
- W4384340322 cites W2510611986 @default.
- W4384340322 cites W2512613863 @default.
- W4384340322 cites W2558095361 @default.
- W4384340322 cites W2560144633 @default.
- W4384340322 cites W2586551425 @default.
- W4384340322 cites W2608820167 @default.
- W4384340322 cites W2766006206 @default.
- W4384340322 cites W2894861463 @default.
- W4384340322 cites W2897584273 @default.
- W4384340322 cites W2946513204 @default.
- W4384340322 cites W2962716607 @default.
- W4384340322 cites W2971471509 @default.
- W4384340322 cites W2979563681 @default.
- W4384340322 cites W2982039832 @default.
- W4384340322 cites W3005640413 @default.
- W4384340322 cites W3010008782 @default.
- W4384340322 cites W3013275497 @default.
- W4384340322 cites W3014068938 @default.
- W4384340322 cites W3014661023 @default.
- W4384340322 cites W3044547976 @default.
- W4384340322 cites W3045217795 @default.
- W4384340322 cites W3113272396 @default.
- W4384340322 cites W3137258066 @default.
- W4384340322 cites W3176565615 @default.
- W4384340322 cites W3198871473 @default.
- W4384340322 cites W3203573756 @default.
- W4384340322 cites W4200442876 @default.
- W4384340322 cites W4206151682 @default.
- W4384340322 cites W4214815077 @default.
- W4384340322 cites W4229020802 @default.
- W4384340322 cites W4285085024 @default.
- W4384340322 cites W4286631466 @default.
- W4384340322 cites W4289877299 @default.
- W4384340322 doi "https://doi.org/10.1021/accountsmr.3c00057" @default.
- W4384340322 hasPublicationYear "2023" @default.
- W4384340322 type Work @default.
- W4384340322 citedByCount "0" @default.
- W4384340322 crossrefType "journal-article" @default.
- W4384340322 hasAuthorship W4384340322A5014545036 @default.
- W4384340322 hasAuthorship W4384340322A5056409865 @default.
- W4384340322 hasBestOaLocation W43843403221 @default.
- W4384340322 hasConcept C119599485 @default.
- W4384340322 hasConcept C121332964 @default.
- W4384340322 hasConcept C127413603 @default.
- W4384340322 hasConcept C134018914 @default.
- W4384340322 hasConcept C135473242 @default.
- W4384340322 hasConcept C144822601 @default.
- W4384340322 hasConcept C147789679 @default.
- W4384340322 hasConcept C153465999 @default.
- W4384340322 hasConcept C163258240 @default.
- W4384340322 hasConcept C171250308 @default.
- W4384340322 hasConcept C17525397 @default.
- W4384340322 hasConcept C179104552 @default.
- W4384340322 hasConcept C185592680 @default.
- W4384340322 hasConcept C188573790 @default.
- W4384340322 hasConcept C192562407 @default.
- W4384340322 hasConcept C21880701 @default.
- W4384340322 hasConcept C2778541603 @default.
- W4384340322 hasConcept C38864968 @default.
- W4384340322 hasConcept C423512 @default.
- W4384340322 hasConcept C52859227 @default.
- W4384340322 hasConcept C544738498 @default.
- W4384340322 hasConcept C55904794 @default.
- W4384340322 hasConcept C62520636 @default.
- W4384340322 hasConcept C71924100 @default.