Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384341003> ?p ?o ?g. }
- W4384341003 endingPage "11010" @default.
- W4384341003 startingPage "11010" @default.
- W4384341003 abstract "Research on the power prediction of proton exchange membrane fuel cells (PEMFCs) has garnered considerable attention. Because mainstream computational-fluid-dynamics-based methods are time-consuming, this study aimed to design a data-driven method based on Ridge regression (Ridge) and convolutional neural network (CNN) algorithms that can efficiently predict PEMFC power under uncertain conditions in real-world scenarios and reduce the time consumption. The measured data from a PEMFC test bench (3 kW) were collected as the data source for the model. First, we adopted Ridge to eliminate abnormal samples. Second, we analyzed and selected the variables that have a significant effect on PEMFC power. Moreover, we optimized the model using batch normalization, dropout, Nadam, Swish, and Huber techniques. Finally, the performance of the model was evaluated by combining real datasets and real polarization curves. The experimental results demonstrate that the polarization curves predicted by the CNN-based model agree with the real curves, with a prediction accuracy of approximately 0.96, a prediction time of 1 μs, and an iteration period of less than 1 s per cycle. A comparative analysis shows that the CNN-based model prediction precision was superior to that of other mainstream machine learning algorithms. In real scenarios, the CNN-based model accurately predicts the power of PEMFC." @default.
- W4384341003 created "2023-07-15" @default.
- W4384341003 creator A5007862425 @default.
- W4384341003 creator A5077814892 @default.
- W4384341003 creator A5089869894 @default.
- W4384341003 date "2023-07-13" @default.
- W4384341003 modified "2023-09-26" @default.
- W4384341003 title "Proton Exchange Membrane Fuel Cell Power Prediction Based on Ridge Regression and Convolutional Neural Network Data-Driven Model" @default.
- W4384341003 cites W1606689635 @default.
- W4384341003 cites W1977925302 @default.
- W4384341003 cites W1993969024 @default.
- W4384341003 cites W2002511289 @default.
- W4384341003 cites W2015009486 @default.
- W4384341003 cites W2035439756 @default.
- W4384341003 cites W2038300747 @default.
- W4384341003 cites W2040654740 @default.
- W4384341003 cites W2060146028 @default.
- W4384341003 cites W2070097680 @default.
- W4384341003 cites W2071482300 @default.
- W4384341003 cites W2083396291 @default.
- W4384341003 cites W2093779538 @default.
- W4384341003 cites W2122099868 @default.
- W4384341003 cites W2163035113 @default.
- W4384341003 cites W2202013993 @default.
- W4384341003 cites W2346953387 @default.
- W4384341003 cites W2399581009 @default.
- W4384341003 cites W2400180537 @default.
- W4384341003 cites W2410105350 @default.
- W4384341003 cites W2514061095 @default.
- W4384341003 cites W2519517278 @default.
- W4384341003 cites W2560774996 @default.
- W4384341003 cites W2772891663 @default.
- W4384341003 cites W2801956091 @default.
- W4384341003 cites W2805960787 @default.
- W4384341003 cites W2887001464 @default.
- W4384341003 cites W2898597600 @default.
- W4384341003 cites W2909203378 @default.
- W4384341003 cites W2947214013 @default.
- W4384341003 cites W2972756978 @default.
- W4384341003 cites W2974110543 @default.
- W4384341003 cites W2987245004 @default.
- W4384341003 cites W2999561881 @default.
- W4384341003 cites W3010836948 @default.
- W4384341003 cites W3015940208 @default.
- W4384341003 cites W3017104303 @default.
- W4384341003 cites W3017694027 @default.
- W4384341003 cites W3022348584 @default.
- W4384341003 cites W3038559317 @default.
- W4384341003 cites W3047049188 @default.
- W4384341003 cites W3082846868 @default.
- W4384341003 cites W3093406260 @default.
- W4384341003 cites W3094936867 @default.
- W4384341003 cites W3096711230 @default.
- W4384341003 cites W3121337228 @default.
- W4384341003 cites W3124241006 @default.
- W4384341003 cites W3132638530 @default.
- W4384341003 cites W3147070028 @default.
- W4384341003 cites W3154133144 @default.
- W4384341003 cites W3169470951 @default.
- W4384341003 cites W3170937085 @default.
- W4384341003 cites W3197063358 @default.
- W4384341003 cites W4247239625 @default.
- W4384341003 cites W4281724355 @default.
- W4384341003 cites W4283031999 @default.
- W4384341003 cites W4283259766 @default.
- W4384341003 cites W4286251270 @default.
- W4384341003 cites W4311700818 @default.
- W4384341003 doi "https://doi.org/10.3390/su151411010" @default.
- W4384341003 hasPublicationYear "2023" @default.
- W4384341003 type Work @default.
- W4384341003 citedByCount "0" @default.
- W4384341003 crossrefType "journal-article" @default.
- W4384341003 hasAuthorship W4384341003A5007862425 @default.
- W4384341003 hasAuthorship W4384341003A5077814892 @default.
- W4384341003 hasAuthorship W4384341003A5089869894 @default.
- W4384341003 hasBestOaLocation W43843410031 @default.
- W4384341003 hasConcept C105795698 @default.
- W4384341003 hasConcept C11413529 @default.
- W4384341003 hasConcept C119857082 @default.
- W4384341003 hasConcept C121332964 @default.
- W4384341003 hasConcept C127413603 @default.
- W4384341003 hasConcept C132319479 @default.
- W4384341003 hasConcept C136886441 @default.
- W4384341003 hasConcept C144024400 @default.
- W4384341003 hasConcept C147789679 @default.
- W4384341003 hasConcept C151730666 @default.
- W4384341003 hasConcept C154945302 @default.
- W4384341003 hasConcept C163258240 @default.
- W4384341003 hasConcept C185592680 @default.
- W4384341003 hasConcept C19165224 @default.
- W4384341003 hasConcept C205049153 @default.
- W4384341003 hasConcept C2987658370 @default.
- W4384341003 hasConcept C32277403 @default.
- W4384341003 hasConcept C33923547 @default.
- W4384341003 hasConcept C41008148 @default.
- W4384341003 hasConcept C42360764 @default.
- W4384341003 hasConcept C50644808 @default.
- W4384341003 hasConcept C62520636 @default.