Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384341118> ?p ?o ?g. }
- W4384341118 endingPage "10968" @default.
- W4384341118 startingPage "10968" @default.
- W4384341118 abstract "Machine learning (ML) algorithms can be used to predict wood volume in a faster and more accurate way, providing reliable answers in forest inventories. The objective of this work was to evaluate the performance of different ML techniques to predict the volume of eucalyptus wood, using diameter at breast height (DBH) and total height (Ht) as input variables, obtained by measuring DBH and Ht of 72 trees of six eucalyptus species (Eucalyptus camaldulensis, E. uroplylla, E. saligna, E. grandis, E. urograndis, and Corymbria citriodora). The trees were cut down in two different epochs, rendering 48 samples at 24 months and 24 samples at 48 months, and the volume of each tree was measured using the Smailian method. This research explores five machine learning models, namely artificial neural networks (ANN), K-nearest neighbor (KNN), multiple linear regression (LR), random forest (RF) and support vector machine (SVM), to estimate the volume of eucalyptus wood using DBH and Ht. Artificial neural networks achieved higher correlations between observed and estimated wood volume values. However, the RF outperformed all models by providing lower MAE and higher correlations between observed and estimated wood volume values. Therefore, RF is the most accurate for predicting wood volume in eucalyptus species." @default.
- W4384341118 created "2023-07-15" @default.
- W4384341118 creator A5001373944 @default.
- W4384341118 creator A5005729649 @default.
- W4384341118 creator A5016122259 @default.
- W4384341118 creator A5034745689 @default.
- W4384341118 creator A5044762159 @default.
- W4384341118 creator A5050295602 @default.
- W4384341118 creator A5057163343 @default.
- W4384341118 creator A5069423948 @default.
- W4384341118 creator A5083224861 @default.
- W4384341118 creator A5091540637 @default.
- W4384341118 date "2023-07-13" @default.
- W4384341118 modified "2023-10-18" @default.
- W4384341118 title "Machine Learning Methods for Woody Volume Prediction in Eucalyptus" @default.
- W4384341118 cites W1966279506 @default.
- W4384341118 cites W1981139388 @default.
- W4384341118 cites W1998048588 @default.
- W4384341118 cites W2005093197 @default.
- W4384341118 cites W2016047526 @default.
- W4384341118 cites W2026212992 @default.
- W4384341118 cites W2033275656 @default.
- W4384341118 cites W2063666423 @default.
- W4384341118 cites W2090675543 @default.
- W4384341118 cites W2115759662 @default.
- W4384341118 cites W2133642590 @default.
- W4384341118 cites W2143746851 @default.
- W4384341118 cites W2782485997 @default.
- W4384341118 cites W2807734510 @default.
- W4384341118 cites W2948651093 @default.
- W4384341118 cites W2971697648 @default.
- W4384341118 cites W3005202265 @default.
- W4384341118 cites W3016674335 @default.
- W4384341118 cites W3022011454 @default.
- W4384341118 cites W3045046752 @default.
- W4384341118 cites W3154881358 @default.
- W4384341118 cites W3159234379 @default.
- W4384341118 cites W3178285762 @default.
- W4384341118 cites W4311049280 @default.
- W4384341118 doi "https://doi.org/10.3390/su151410968" @default.
- W4384341118 hasPublicationYear "2023" @default.
- W4384341118 type Work @default.
- W4384341118 citedByCount "0" @default.
- W4384341118 crossrefType "journal-article" @default.
- W4384341118 hasAuthorship W4384341118A5001373944 @default.
- W4384341118 hasAuthorship W4384341118A5005729649 @default.
- W4384341118 hasAuthorship W4384341118A5016122259 @default.
- W4384341118 hasAuthorship W4384341118A5034745689 @default.
- W4384341118 hasAuthorship W4384341118A5044762159 @default.
- W4384341118 hasAuthorship W4384341118A5050295602 @default.
- W4384341118 hasAuthorship W4384341118A5057163343 @default.
- W4384341118 hasAuthorship W4384341118A5069423948 @default.
- W4384341118 hasAuthorship W4384341118A5083224861 @default.
- W4384341118 hasAuthorship W4384341118A5091540637 @default.
- W4384341118 hasBestOaLocation W43843411181 @default.
- W4384341118 hasConcept C119857082 @default.
- W4384341118 hasConcept C121332964 @default.
- W4384341118 hasConcept C12267149 @default.
- W4384341118 hasConcept C154945302 @default.
- W4384341118 hasConcept C169258074 @default.
- W4384341118 hasConcept C20556612 @default.
- W4384341118 hasConcept C205649164 @default.
- W4384341118 hasConcept C2779752776 @default.
- W4384341118 hasConcept C2992212200 @default.
- W4384341118 hasConcept C33923547 @default.
- W4384341118 hasConcept C41008148 @default.
- W4384341118 hasConcept C50644808 @default.
- W4384341118 hasConcept C58330081 @default.
- W4384341118 hasConcept C59822182 @default.
- W4384341118 hasConcept C62520636 @default.
- W4384341118 hasConcept C86803240 @default.
- W4384341118 hasConcept C97137747 @default.
- W4384341118 hasConceptScore W4384341118C119857082 @default.
- W4384341118 hasConceptScore W4384341118C121332964 @default.
- W4384341118 hasConceptScore W4384341118C12267149 @default.
- W4384341118 hasConceptScore W4384341118C154945302 @default.
- W4384341118 hasConceptScore W4384341118C169258074 @default.
- W4384341118 hasConceptScore W4384341118C20556612 @default.
- W4384341118 hasConceptScore W4384341118C205649164 @default.
- W4384341118 hasConceptScore W4384341118C2779752776 @default.
- W4384341118 hasConceptScore W4384341118C2992212200 @default.
- W4384341118 hasConceptScore W4384341118C33923547 @default.
- W4384341118 hasConceptScore W4384341118C41008148 @default.
- W4384341118 hasConceptScore W4384341118C50644808 @default.
- W4384341118 hasConceptScore W4384341118C58330081 @default.
- W4384341118 hasConceptScore W4384341118C59822182 @default.
- W4384341118 hasConceptScore W4384341118C62520636 @default.
- W4384341118 hasConceptScore W4384341118C86803240 @default.
- W4384341118 hasConceptScore W4384341118C97137747 @default.
- W4384341118 hasIssue "14" @default.
- W4384341118 hasLocation W43843411181 @default.
- W4384341118 hasOpenAccess W4384341118 @default.
- W4384341118 hasPrimaryLocation W43843411181 @default.
- W4384341118 hasRelatedWork W2515714565 @default.
- W4384341118 hasRelatedWork W2979979539 @default.
- W4384341118 hasRelatedWork W2985924212 @default.
- W4384341118 hasRelatedWork W3004897296 @default.
- W4384341118 hasRelatedWork W3116896278 @default.