Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384341396> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4384341396 abstract "Bioinformatics, an interdisciplinary field combining biology, computer science, and statistics, has advanced with deep learning and natural language processing techniques. This perspective explores the applications of fine-tuned language models in bioinformatics, highlighting their potential in various domains while discussing challenges and limitations. Fine-tuned language models benefit biomedical literature analysis, extracting information from scientific papers to synthesize knowledge and generate synthetic sequences for DNA, RNA, and protein research. In drug discovery, these models can identify novel drug targets, accelerate virtual screening, and aid drug repurposing by finding new therapeutic indications for existing drugs. For clinical decision support, fine-tuned language models can analyse patient data, medical literature, and guidelines to provide personalized recommendations and alerts to healthcare professionals. They can also aid accurate protein structure prediction for drug design and target identification. In pharmacovigilance, these models can analyse unstructured data sources to detect adverse events from social media, patient forums, and health records, enabling early intervention and improving patient safety. However, challenges like data availability, domain-specific knowledge, bias, interpretability, resource efficiency, ethics, and validation must be addressed for reliable application. Addressing these challenges will unlock the full potential of fine-tuned language models in bioinformatics, driving advancements and benefiting human health. Collaboration between computational and experimental biologists, ethicists, and regulatory bodies is crucial to establish ethical guidelines and best practices for their use." @default.
- W4384341396 created "2023-07-15" @default.
- W4384341396 creator A5092472004 @default.
- W4384341396 date "2023-07-14" @default.
- W4384341396 modified "2023-10-18" @default.
- W4384341396 title "Leveraging Fine-Tuned Language Models in Bioinformatics: A Research Perspective" @default.
- W4384341396 doi "https://doi.org/10.32388/we7umn" @default.
- W4384341396 hasPublicationYear "2023" @default.
- W4384341396 type Work @default.
- W4384341396 citedByCount "0" @default.
- W4384341396 crossrefType "journal-article" @default.
- W4384341396 hasAuthorship W4384341396A5092472004 @default.
- W4384341396 hasBestOaLocation W43843413961 @default.
- W4384341396 hasConcept C116834253 @default.
- W4384341396 hasConcept C12713177 @default.
- W4384341396 hasConcept C127413603 @default.
- W4384341396 hasConcept C136764020 @default.
- W4384341396 hasConcept C154945302 @default.
- W4384341396 hasConcept C202444582 @default.
- W4384341396 hasConcept C206345919 @default.
- W4384341396 hasConcept C2522767166 @default.
- W4384341396 hasConcept C2781067378 @default.
- W4384341396 hasConcept C31258907 @default.
- W4384341396 hasConcept C33923547 @default.
- W4384341396 hasConcept C41008148 @default.
- W4384341396 hasConcept C518677369 @default.
- W4384341396 hasConcept C519536355 @default.
- W4384341396 hasConcept C548081761 @default.
- W4384341396 hasConcept C59822182 @default.
- W4384341396 hasConcept C60644358 @default.
- W4384341396 hasConcept C66782513 @default.
- W4384341396 hasConcept C86803240 @default.
- W4384341396 hasConcept C9652623 @default.
- W4384341396 hasConceptScore W4384341396C116834253 @default.
- W4384341396 hasConceptScore W4384341396C12713177 @default.
- W4384341396 hasConceptScore W4384341396C127413603 @default.
- W4384341396 hasConceptScore W4384341396C136764020 @default.
- W4384341396 hasConceptScore W4384341396C154945302 @default.
- W4384341396 hasConceptScore W4384341396C202444582 @default.
- W4384341396 hasConceptScore W4384341396C206345919 @default.
- W4384341396 hasConceptScore W4384341396C2522767166 @default.
- W4384341396 hasConceptScore W4384341396C2781067378 @default.
- W4384341396 hasConceptScore W4384341396C31258907 @default.
- W4384341396 hasConceptScore W4384341396C33923547 @default.
- W4384341396 hasConceptScore W4384341396C41008148 @default.
- W4384341396 hasConceptScore W4384341396C518677369 @default.
- W4384341396 hasConceptScore W4384341396C519536355 @default.
- W4384341396 hasConceptScore W4384341396C548081761 @default.
- W4384341396 hasConceptScore W4384341396C59822182 @default.
- W4384341396 hasConceptScore W4384341396C60644358 @default.
- W4384341396 hasConceptScore W4384341396C66782513 @default.
- W4384341396 hasConceptScore W4384341396C86803240 @default.
- W4384341396 hasConceptScore W4384341396C9652623 @default.
- W4384341396 hasLocation W43843413961 @default.
- W4384341396 hasOpenAccess W4384341396 @default.
- W4384341396 hasPrimaryLocation W43843413961 @default.
- W4384341396 hasRelatedWork W1993954228 @default.
- W4384341396 hasRelatedWork W2125643050 @default.
- W4384341396 hasRelatedWork W2393484506 @default.
- W4384341396 hasRelatedWork W2748952813 @default.
- W4384341396 hasRelatedWork W2803232531 @default.
- W4384341396 hasRelatedWork W2947762898 @default.
- W4384341396 hasRelatedWork W2968260065 @default.
- W4384341396 hasRelatedWork W3135473086 @default.
- W4384341396 hasRelatedWork W4206534706 @default.
- W4384341396 hasRelatedWork W4229079080 @default.
- W4384341396 isParatext "false" @default.
- W4384341396 isRetracted "false" @default.
- W4384341396 workType "article" @default.