Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384341507> ?p ?o ?g. }
- W4384341507 endingPage "2572" @default.
- W4384341507 startingPage "2572" @default.
- W4384341507 abstract "The management of water resources depends heavily on hydrological prediction, and advances in machine learning (ML) present prospects for improving predictive modelling capabilities. This study investigates the use of a variety of widely used machine learning algorithms, such as CatBoost, ElasticNet, k-Nearest Neighbors (KNN), Lasso, Light Gradient Boosting Machine Regressor (LGBM), Linear Regression (LR), Multilayer Perceptron (MLP), Random Forest (RF), Ridge, Stochastic Gradient Descent (SGD), and the Extreme Gradient Boosting Regression Model (XGBoost), to predict the river inflow of the Garudeshwar watershed, a key element in planning for flood control and water supply. The substantial engineering feature used in the study, which incorporates temporal lag and contextual data based on Indian seasons, leads it distinctiveness. The study concludes that the CatBoost method demonstrated remarkable performance across various metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2) values, for both training and testing datasets. This was accomplished by an in-depth investigation and model comparison. In contrast to CatBoost, XGBoost and LGBM demonstrated a higher percentage of data points with prediction errors exceeding 35% for moderate inflow numbers above 10,000. CatBoost established itself as a reliable method for hydrological time-series modelling, easily managing both categorical and continuous variables, and thereby greatly enhancing prediction accuracy. The results of this study highlight the value and promise of widely used machine learning algorithms in hydrology and offer valuable insights for academics and industry professionals." @default.
- W4384341507 created "2023-07-15" @default.
- W4384341507 creator A5030758377 @default.
- W4384341507 creator A5031860714 @default.
- W4384341507 creator A5033026699 @default.
- W4384341507 creator A5044138677 @default.
- W4384341507 creator A5091415276 @default.
- W4384341507 date "2023-07-13" @default.
- W4384341507 modified "2023-10-17" @default.
- W4384341507 title "Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models" @default.
- W4384341507 cites W1187712878 @default.
- W4384341507 cites W1971600338 @default.
- W4384341507 cites W1977177161 @default.
- W4384341507 cites W1985511977 @default.
- W4384341507 cites W1990881381 @default.
- W4384341507 cites W2034159055 @default.
- W4384341507 cites W2068249092 @default.
- W4384341507 cites W2081038969 @default.
- W4384341507 cites W2115766178 @default.
- W4384341507 cites W2122122405 @default.
- W4384341507 cites W2129540265 @default.
- W4384341507 cites W2137775074 @default.
- W4384341507 cites W2169886917 @default.
- W4384341507 cites W2170034874 @default.
- W4384341507 cites W2177959459 @default.
- W4384341507 cites W2216946510 @default.
- W4384341507 cites W2237732738 @default.
- W4384341507 cites W2503165465 @default.
- W4384341507 cites W2556851635 @default.
- W4384341507 cites W2771813345 @default.
- W4384341507 cites W2772968059 @default.
- W4384341507 cites W2897882500 @default.
- W4384341507 cites W2901469855 @default.
- W4384341507 cites W2914755028 @default.
- W4384341507 cites W2943160824 @default.
- W4384341507 cites W2949685089 @default.
- W4384341507 cites W2971270198 @default.
- W4384341507 cites W2975641544 @default.
- W4384341507 cites W3011824760 @default.
- W4384341507 cites W3013767593 @default.
- W4384341507 cites W3031194307 @default.
- W4384341507 cites W3033679222 @default.
- W4384341507 cites W3039898056 @default.
- W4384341507 cites W3048917037 @default.
- W4384341507 cites W3092026988 @default.
- W4384341507 cites W3092962781 @default.
- W4384341507 cites W3094193625 @default.
- W4384341507 cites W3156600984 @default.
- W4384341507 cites W3171590774 @default.
- W4384341507 cites W3174646361 @default.
- W4384341507 cites W3196101319 @default.
- W4384341507 cites W3200130490 @default.
- W4384341507 cites W3200826440 @default.
- W4384341507 cites W3205359112 @default.
- W4384341507 cites W3208632257 @default.
- W4384341507 cites W3216505733 @default.
- W4384341507 cites W4200366988 @default.
- W4384341507 cites W4205968662 @default.
- W4384341507 cites W4220661368 @default.
- W4384341507 cites W4225571344 @default.
- W4384341507 cites W4226546282 @default.
- W4384341507 cites W4244230525 @default.
- W4384341507 cites W4289517528 @default.
- W4384341507 cites W4289938273 @default.
- W4384341507 cites W4293237374 @default.
- W4384341507 cites W4298008909 @default.
- W4384341507 cites W4306147191 @default.
- W4384341507 cites W4307725072 @default.
- W4384341507 cites W4308483616 @default.
- W4384341507 cites W4319460000 @default.
- W4384341507 cites W4321765755 @default.
- W4384341507 cites W4324257317 @default.
- W4384341507 cites W4327737973 @default.
- W4384341507 cites W4327973720 @default.
- W4384341507 cites W4360609082 @default.
- W4384341507 cites W4364382664 @default.
- W4384341507 cites W4365144011 @default.
- W4384341507 cites W4367592082 @default.
- W4384341507 cites W4378085746 @default.
- W4384341507 cites W4382652744 @default.
- W4384341507 cites W4383227059 @default.
- W4384341507 cites W964460774 @default.
- W4384341507 doi "https://doi.org/10.3390/w15142572" @default.
- W4384341507 hasPublicationYear "2023" @default.
- W4384341507 type Work @default.
- W4384341507 citedByCount "4" @default.
- W4384341507 countsByYear W43843415072023 @default.
- W4384341507 crossrefType "journal-article" @default.
- W4384341507 hasAuthorship W4384341507A5030758377 @default.
- W4384341507 hasAuthorship W4384341507A5031860714 @default.
- W4384341507 hasAuthorship W4384341507A5033026699 @default.
- W4384341507 hasAuthorship W4384341507A5044138677 @default.
- W4384341507 hasAuthorship W4384341507A5091415276 @default.
- W4384341507 hasBestOaLocation W43843415071 @default.
- W4384341507 hasConcept C105795698 @default.
- W4384341507 hasConcept C119857082 @default.
- W4384341507 hasConcept C136764020 @default.
- W4384341507 hasConcept C139945424 @default.