Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384341728> ?p ?o ?g. }
- W4384341728 abstract "Abstract Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the accuracy of detection is affected by the quantity and quality of training data, so it is important to expand the training data to improve accuracy. This is especially true in the case of buried pipes that are located underground and whose existence cannot be easily confirmed. Therefore, this study developed a method for increasing training data using you only look once v5 (YOLOv5) and StyleGAN2‐ADA to automate the annotation process. Of particular importance is developing a framework for generating images by generative adversarial networks with an emphasis on images that are challenging to detect buried pipes in YOLOv5 and add them to a training dataset to repeat training recursively, which has greatly improved the detection accuracy. Specifically, F ‐values of 0.915, 0.916, and 0.924 were achieved by automatically generating training images step by step from only 500, 1000, and 2000 training images, respectively. These values exceed the F ‐value of 0.900, which is obtained from training by manually annotating 15,000 images, a much larger number. In addition, we applied the method to a road in Shizuoka Prefecture, Japan, and confirmed that the method can detect the location of buried pipes with high accuracy on a real road. This method can contribute to labor‐saving training data expansion, which is time‐consuming and costly in practice, and as a result, the method contributes to improving detection accuracy." @default.
- W4384341728 created "2023-07-15" @default.
- W4384341728 creator A5007758054 @default.
- W4384341728 creator A5067730635 @default.
- W4384341728 creator A5081577782 @default.
- W4384341728 date "2023-07-13" @default.
- W4384341728 modified "2023-10-14" @default.
- W4384341728 title "Iterative application of generative adversarial networks for improved buried pipe detection from images obtained by ground‐penetrating radar" @default.
- W4384341728 cites W1592593575 @default.
- W4384341728 cites W1897266907 @default.
- W4384341728 cites W1901129140 @default.
- W4384341728 cites W2005208852 @default.
- W4384341728 cites W2019872178 @default.
- W4384341728 cites W2079629977 @default.
- W4384341728 cites W2102566310 @default.
- W4384341728 cites W2123665156 @default.
- W4384341728 cites W2130976145 @default.
- W4384341728 cites W2521901407 @default.
- W4384341728 cites W2565217755 @default.
- W4384341728 cites W2586537367 @default.
- W4384341728 cites W2729478895 @default.
- W4384341728 cites W2732719441 @default.
- W4384341728 cites W2736832651 @default.
- W4384341728 cites W2766854032 @default.
- W4384341728 cites W2776541877 @default.
- W4384341728 cites W2794183852 @default.
- W4384341728 cites W2796506861 @default.
- W4384341728 cites W2799748868 @default.
- W4384341728 cites W2801439730 @default.
- W4384341728 cites W2888755897 @default.
- W4384341728 cites W2894295805 @default.
- W4384341728 cites W2901973197 @default.
- W4384341728 cites W2903155537 @default.
- W4384341728 cites W2905734412 @default.
- W4384341728 cites W2916071927 @default.
- W4384341728 cites W2921440296 @default.
- W4384341728 cites W2943631776 @default.
- W4384341728 cites W2955333808 @default.
- W4384341728 cites W2963037989 @default.
- W4384341728 cites W2963249133 @default.
- W4384341728 cites W2964309882 @default.
- W4384341728 cites W2966126335 @default.
- W4384341728 cites W2973007446 @default.
- W4384341728 cites W2973669391 @default.
- W4384341728 cites W2994408221 @default.
- W4384341728 cites W3001229584 @default.
- W4384341728 cites W3002210514 @default.
- W4384341728 cites W3006272063 @default.
- W4384341728 cites W3010605964 @default.
- W4384341728 cites W3013359997 @default.
- W4384341728 cites W3026226589 @default.
- W4384341728 cites W3034059856 @default.
- W4384341728 cites W3037106793 @default.
- W4384341728 cites W3038325564 @default.
- W4384341728 cites W3096045206 @default.
- W4384341728 cites W3114812401 @default.
- W4384341728 cites W3124942917 @default.
- W4384341728 cites W3134010413 @default.
- W4384341728 cites W3137884833 @default.
- W4384341728 cites W3146765912 @default.
- W4384341728 cites W3175504132 @default.
- W4384341728 cites W3189310703 @default.
- W4384341728 cites W3193645131 @default.
- W4384341728 cites W3200868808 @default.
- W4384341728 cites W3201059747 @default.
- W4384341728 cites W3203879104 @default.
- W4384341728 cites W3205036094 @default.
- W4384341728 cites W3205320246 @default.
- W4384341728 cites W3217020410 @default.
- W4384341728 cites W3217580385 @default.
- W4384341728 cites W4206452689 @default.
- W4384341728 cites W4280649818 @default.
- W4384341728 cites W4283030461 @default.
- W4384341728 cites W4286579687 @default.
- W4384341728 cites W4289204363 @default.
- W4384341728 cites W4290603431 @default.
- W4384341728 cites W4293099165 @default.
- W4384341728 cites W4293660856 @default.
- W4384341728 cites W4298289240 @default.
- W4384341728 cites W4302292783 @default.
- W4384341728 cites W4321849668 @default.
- W4384341728 doi "https://doi.org/10.1111/mice.13070" @default.
- W4384341728 hasPublicationYear "2023" @default.
- W4384341728 type Work @default.
- W4384341728 citedByCount "1" @default.
- W4384341728 countsByYear W43843417282023 @default.
- W4384341728 crossrefType "journal-article" @default.
- W4384341728 hasAuthorship W4384341728A5007758054 @default.
- W4384341728 hasAuthorship W4384341728A5067730635 @default.
- W4384341728 hasAuthorship W4384341728A5081577782 @default.
- W4384341728 hasBestOaLocation W43843417281 @default.
- W4384341728 hasConcept C111919701 @default.
- W4384341728 hasConcept C115903868 @default.
- W4384341728 hasConcept C115961682 @default.
- W4384341728 hasConcept C127313418 @default.
- W4384341728 hasConcept C143587482 @default.
- W4384341728 hasConcept C153180895 @default.
- W4384341728 hasConcept C153294291 @default.
- W4384341728 hasConcept C154945302 @default.
- W4384341728 hasConcept C187320778 @default.